{ "version": 3, "sources": ["../node_modules/gl-matrix/cjs/common.js", "../node_modules/gl-matrix/cjs/mat2.js", "../node_modules/gl-matrix/cjs/mat2d.js", "../node_modules/gl-matrix/cjs/mat3.js", "../node_modules/gl-matrix/cjs/mat4.js", "../node_modules/gl-matrix/cjs/vec3.js", "../node_modules/gl-matrix/cjs/vec4.js", "../node_modules/gl-matrix/cjs/quat.js", "../node_modules/gl-matrix/cjs/quat2.js", "../node_modules/gl-matrix/cjs/vec2.js", "../node_modules/gl-matrix/cjs/index.js", "../node_modules/@sardinefish/zogra-renderer/src/types/vec3.ts", "../node_modules/@sardinefish/zogra-renderer/src/types/vec4.ts", "../node_modules/@sardinefish/zogra-renderer/src/types/vec2.ts", "../node_modules/@sardinefish/zogra-renderer/src/types/color.ts", "../node_modules/@sardinefish/zogra-renderer/src/types/math.ts", "../node_modules/@sardinefish/zogra-renderer/src/types/mat4.ts", "../node_modules/@sardinefish/zogra-renderer/src/types/quat.ts", "../node_modules/@sardinefish/zogra-renderer/src/types/ray.ts", "../node_modules/@sardinefish/zogra-renderer/src/types/rect.ts", "../node_modules/@sardinefish/zogra-renderer/src/types/types.ts", "../node_modules/reflect-metadata/Reflect.js", "../node_modules/@sardinefish/zogra-renderer/src/core/global.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/texture-format.ts", "../node_modules/@sardinefish/zogra-renderer/src/utils/util.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/event.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/asset.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/shader.ts", "../node_modules/@sardinefish/zogra-renderer/src/builtin-assets/shaders.ts", "../node_modules/@sardinefish/zogra-renderer/src/utils/image-sizing.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/texture.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/material.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/material-type.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/mesh.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/render-target.ts", "../node_modules/@sardinefish/zogra-renderer/src/builtin-assets/materials.ts", "../node_modules/@sardinefish/zogra-renderer/src/builtin-assets/textures.ts", "../node_modules/@sardinefish/zogra-renderer/src/utils/mesh-builder.ts", "../node_modules/@sardinefish/zogra-renderer/src/builtin-assets/mesh.ts", "../node_modules/@sardinefish/zogra-renderer/src/builtin-assets/assets.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/renderer.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/lines.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/buffer.ts", "../node_modules/@sardinefish/zogra-renderer/src/core/core.ts", "../node_modules/@sardinefish/zogra-renderer/src/plugins/assets-importer/types.ts", "../node_modules/@sardinefish/zogra-renderer/src/plugins/assets-importer/assets-importer.ts", "../node_modules/@sardinefish/zogra-renderer/src/plugins/texture-importer/texture-importer.ts", "../node_modules/@sardinefish/zogra-renderer/src/plugins/plugins.ts", "../node_modules/@sardinefish/zogra-renderer/src/utils/public-utils.ts", "../node_modules/@sardinefish/zogra-renderer/src/utils/index.ts", "../node_modules/@sardinefish/zogra-renderer/src/index.ts", "../src/index.ts", "../src/renderer.ts", "../src/blur.ts", "../src/random.ts", "../src/raindrop.ts", "../src/utils.ts", "../src/spawner.ts", "../src/simulator.ts"], "sourcesContent": ["\"use strict\";\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.setMatrixArrayType = setMatrixArrayType;\nexports.toRadian = toRadian;\nexports.equals = equals;\nexports.RANDOM = exports.ARRAY_TYPE = exports.EPSILON = void 0;\n\n/**\r\n * Common utilities\r\n * @module glMatrix\r\n */\n// Configuration Constants\nvar EPSILON = 0.000001;\nexports.EPSILON = EPSILON;\nvar ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;\nexports.ARRAY_TYPE = ARRAY_TYPE;\nvar RANDOM = Math.random;\n/**\r\n * Sets the type of array used when creating new vectors and matrices\r\n *\r\n * @param {Float32ArrayConstructor | ArrayConstructor} type Array type, such as Float32Array or Array\r\n */\n\nexports.RANDOM = RANDOM;\n\nfunction setMatrixArrayType(type) {\n exports.ARRAY_TYPE = ARRAY_TYPE = type;\n}\n\nvar degree = Math.PI / 180;\n/**\r\n * Convert Degree To Radian\r\n *\r\n * @param {Number} a Angle in Degrees\r\n */\n\nfunction toRadian(a) {\n return a * degree;\n}\n/**\r\n * Tests whether or not the arguments have approximately the same value, within an absolute\r\n * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less\r\n * than or equal to 1.0, and a relative tolerance is used for larger values)\r\n *\r\n * @param {Number} a The first number to test.\r\n * @param {Number} b The second number to test.\r\n * @returns {Boolean} True if the numbers are approximately equal, false otherwise.\r\n */\n\n\nfunction equals(a, b) {\n return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));\n}\n\nif (!Math.hypot) Math.hypot = function () {\n var y = 0,\n i = arguments.length;\n\n while (i--) {\n y += arguments[i] * arguments[i];\n }\n\n return Math.sqrt(y);\n};", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.identity = identity;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.str = str;\nexports.frob = frob;\nexports.LDU = LDU;\nexports.add = add;\nexports.subtract = subtract;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.sub = exports.mul = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }\n\n/**\r\n * 2x2 Matrix\r\n * @module mat2\r\n */\n\n/**\r\n * Creates a new identity mat2\r\n *\r\n * @returns {mat2} a new 2x2 matrix\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[1] = 0;\n out[2] = 0;\n }\n\n out[0] = 1;\n out[3] = 1;\n return out;\n}\n/**\r\n * Creates a new mat2 initialized with values from an existing matrix\r\n *\r\n * @param {ReadonlyMat2} a matrix to clone\r\n * @returns {mat2} a new 2x2 matrix\r\n */\n\n\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n/**\r\n * Copy the values from one mat2 to another\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the source matrix\r\n * @returns {mat2} out\r\n */\n\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n/**\r\n * Set a mat2 to the identity matrix\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @returns {mat2} out\r\n */\n\n\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n/**\r\n * Create a new mat2 with the given values\r\n *\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 2)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 3)\r\n * @returns {mat2} out A new 2x2 matrix\r\n */\n\n\nfunction fromValues(m00, m01, m10, m11) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = m00;\n out[1] = m01;\n out[2] = m10;\n out[3] = m11;\n return out;\n}\n/**\r\n * Set the components of a mat2 to the given values\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 2)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 3)\r\n * @returns {mat2} out\r\n */\n\n\nfunction set(out, m00, m01, m10, m11) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m10;\n out[3] = m11;\n return out;\n}\n/**\r\n * Transpose the values of a mat2\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the source matrix\r\n * @returns {mat2} out\r\n */\n\n\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache\n // some values\n if (out === a) {\n var a1 = a[1];\n out[1] = a[2];\n out[2] = a1;\n } else {\n out[0] = a[0];\n out[1] = a[2];\n out[2] = a[1];\n out[3] = a[3];\n }\n\n return out;\n}\n/**\r\n * Inverts a mat2\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the source matrix\r\n * @returns {mat2} out\r\n */\n\n\nfunction invert(out, a) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3]; // Calculate the determinant\n\n var det = a0 * a3 - a2 * a1;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = a3 * det;\n out[1] = -a1 * det;\n out[2] = -a2 * det;\n out[3] = a0 * det;\n return out;\n}\n/**\r\n * Calculates the adjugate of a mat2\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the source matrix\r\n * @returns {mat2} out\r\n */\n\n\nfunction adjoint(out, a) {\n // Caching this value is nessecary if out == a\n var a0 = a[0];\n out[0] = a[3];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a0;\n return out;\n}\n/**\r\n * Calculates the determinant of a mat2\r\n *\r\n * @param {ReadonlyMat2} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\n\n\nfunction determinant(a) {\n return a[0] * a[3] - a[2] * a[1];\n}\n/**\r\n * Multiplies two mat2's\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the first operand\r\n * @param {ReadonlyMat2} b the second operand\r\n * @returns {mat2} out\r\n */\n\n\nfunction multiply(out, a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n out[0] = a0 * b0 + a2 * b1;\n out[1] = a1 * b0 + a3 * b1;\n out[2] = a0 * b2 + a2 * b3;\n out[3] = a1 * b2 + a3 * b3;\n return out;\n}\n/**\r\n * Rotates a mat2 by the given angle\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat2} out\r\n */\n\n\nfunction rotate(out, a, rad) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = a0 * c + a2 * s;\n out[1] = a1 * c + a3 * s;\n out[2] = a0 * -s + a2 * c;\n out[3] = a1 * -s + a3 * c;\n return out;\n}\n/**\r\n * Scales the mat2 by the dimensions in the given vec2\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the matrix to rotate\r\n * @param {ReadonlyVec2} v the vec2 to scale the matrix by\r\n * @returns {mat2} out\r\n **/\n\n\nfunction scale(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0 * v0;\n out[1] = a1 * v0;\n out[2] = a2 * v1;\n out[3] = a3 * v1;\n return out;\n}\n/**\r\n * Creates a matrix from a given angle\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2.identity(dest);\r\n * mat2.rotate(dest, dest, rad);\r\n *\r\n * @param {mat2} out mat2 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat2} out\r\n */\n\n\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = -s;\n out[3] = c;\n return out;\n}\n/**\r\n * Creates a matrix from a vector scaling\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2.identity(dest);\r\n * mat2.scale(dest, dest, vec);\r\n *\r\n * @param {mat2} out mat2 receiving operation result\r\n * @param {ReadonlyVec2} v Scaling vector\r\n * @returns {mat2} out\r\n */\n\n\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = v[1];\n return out;\n}\n/**\r\n * Returns a string representation of a mat2\r\n *\r\n * @param {ReadonlyMat2} a matrix to represent as a string\r\n * @returns {String} string representation of the matrix\r\n */\n\n\nfunction str(a) {\n return \"mat2(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \", \" + a[3] + \")\";\n}\n/**\r\n * Returns Frobenius norm of a mat2\r\n *\r\n * @param {ReadonlyMat2} a the matrix to calculate Frobenius norm of\r\n * @returns {Number} Frobenius norm\r\n */\n\n\nfunction frob(a) {\n return Math.hypot(a[0], a[1], a[2], a[3]);\n}\n/**\r\n * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix\r\n * @param {ReadonlyMat2} L the lower triangular matrix\r\n * @param {ReadonlyMat2} D the diagonal matrix\r\n * @param {ReadonlyMat2} U the upper triangular matrix\r\n * @param {ReadonlyMat2} a the input matrix to factorize\r\n */\n\n\nfunction LDU(L, D, U, a) {\n L[2] = a[2] / a[0];\n U[0] = a[0];\n U[1] = a[1];\n U[3] = a[3] - L[2] * U[1];\n return [L, D, U];\n}\n/**\r\n * Adds two mat2's\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the first operand\r\n * @param {ReadonlyMat2} b the second operand\r\n * @returns {mat2} out\r\n */\n\n\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n return out;\n}\n/**\r\n * Subtracts matrix b from matrix a\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the first operand\r\n * @param {ReadonlyMat2} b the second operand\r\n * @returns {mat2} out\r\n */\n\n\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n return out;\n}\n/**\r\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyMat2} a The first matrix.\r\n * @param {ReadonlyMat2} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\n\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];\n}\n/**\r\n * Returns whether or not the matrices have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyMat2} a The first matrix.\r\n * @param {ReadonlyMat2} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\n\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));\n}\n/**\r\n * Multiply each element of the matrix by a scalar.\r\n *\r\n * @param {mat2} out the receiving matrix\r\n * @param {ReadonlyMat2} a the matrix to scale\r\n * @param {Number} b amount to scale the matrix's elements by\r\n * @returns {mat2} out\r\n */\n\n\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n return out;\n}\n/**\r\n * Adds two mat2's after multiplying each element of the second operand by a scalar value.\r\n *\r\n * @param {mat2} out the receiving vector\r\n * @param {ReadonlyMat2} a the first operand\r\n * @param {ReadonlyMat2} b the second operand\r\n * @param {Number} scale the amount to scale b's elements by before adding\r\n * @returns {mat2} out\r\n */\n\n\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n return out;\n}\n/**\r\n * Alias for {@link mat2.multiply}\r\n * @function\r\n */\n\n\nvar mul = multiply;\n/**\r\n * Alias for {@link mat2.subtract}\r\n * @function\r\n */\n\nexports.mul = mul;\nvar sub = subtract;\nexports.sub = sub;", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.identity = identity;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.invert = invert;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.translate = translate;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.fromTranslation = fromTranslation;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.sub = exports.mul = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }\n\n/**\r\n * 2x3 Matrix\r\n * @module mat2d\r\n * @description\r\n * A mat2d contains six elements defined as:\r\n *
\r\n * [a, b,\r\n *  c, d,\r\n *  tx, ty]\r\n * 
\r\n * This is a short form for the 3x3 matrix:\r\n *
\r\n * [a, b, 0,\r\n *  c, d, 0,\r\n *  tx, ty, 1]\r\n * 
\r\n * The last column is ignored so the array is shorter and operations are faster.\r\n */\n\n/**\r\n * Creates a new identity mat2d\r\n *\r\n * @returns {mat2d} a new 2x3 matrix\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(6);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[1] = 0;\n out[2] = 0;\n out[4] = 0;\n out[5] = 0;\n }\n\n out[0] = 1;\n out[3] = 1;\n return out;\n}\n/**\r\n * Creates a new mat2d initialized with values from an existing matrix\r\n *\r\n * @param {ReadonlyMat2d} a matrix to clone\r\n * @returns {mat2d} a new 2x3 matrix\r\n */\n\n\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n return out;\n}\n/**\r\n * Copy the values from one mat2d to another\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the source matrix\r\n * @returns {mat2d} out\r\n */\n\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n return out;\n}\n/**\r\n * Set a mat2d to the identity matrix\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @returns {mat2d} out\r\n */\n\n\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n/**\r\n * Create a new mat2d with the given values\r\n *\r\n * @param {Number} a Component A (index 0)\r\n * @param {Number} b Component B (index 1)\r\n * @param {Number} c Component C (index 2)\r\n * @param {Number} d Component D (index 3)\r\n * @param {Number} tx Component TX (index 4)\r\n * @param {Number} ty Component TY (index 5)\r\n * @returns {mat2d} A new mat2d\r\n */\n\n\nfunction fromValues(a, b, c, d, tx, ty) {\n var out = new glMatrix.ARRAY_TYPE(6);\n out[0] = a;\n out[1] = b;\n out[2] = c;\n out[3] = d;\n out[4] = tx;\n out[5] = ty;\n return out;\n}\n/**\r\n * Set the components of a mat2d to the given values\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {Number} a Component A (index 0)\r\n * @param {Number} b Component B (index 1)\r\n * @param {Number} c Component C (index 2)\r\n * @param {Number} d Component D (index 3)\r\n * @param {Number} tx Component TX (index 4)\r\n * @param {Number} ty Component TY (index 5)\r\n * @returns {mat2d} out\r\n */\n\n\nfunction set(out, a, b, c, d, tx, ty) {\n out[0] = a;\n out[1] = b;\n out[2] = c;\n out[3] = d;\n out[4] = tx;\n out[5] = ty;\n return out;\n}\n/**\r\n * Inverts a mat2d\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the source matrix\r\n * @returns {mat2d} out\r\n */\n\n\nfunction invert(out, a) {\n var aa = a[0],\n ab = a[1],\n ac = a[2],\n ad = a[3];\n var atx = a[4],\n aty = a[5];\n var det = aa * ad - ab * ac;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = ad * det;\n out[1] = -ab * det;\n out[2] = -ac * det;\n out[3] = aa * det;\n out[4] = (ac * aty - ad * atx) * det;\n out[5] = (ab * atx - aa * aty) * det;\n return out;\n}\n/**\r\n * Calculates the determinant of a mat2d\r\n *\r\n * @param {ReadonlyMat2d} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\n\n\nfunction determinant(a) {\n return a[0] * a[3] - a[1] * a[2];\n}\n/**\r\n * Multiplies two mat2d's\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the first operand\r\n * @param {ReadonlyMat2d} b the second operand\r\n * @returns {mat2d} out\r\n */\n\n\nfunction multiply(out, a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5];\n out[0] = a0 * b0 + a2 * b1;\n out[1] = a1 * b0 + a3 * b1;\n out[2] = a0 * b2 + a2 * b3;\n out[3] = a1 * b2 + a3 * b3;\n out[4] = a0 * b4 + a2 * b5 + a4;\n out[5] = a1 * b4 + a3 * b5 + a5;\n return out;\n}\n/**\r\n * Rotates a mat2d by the given angle\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat2d} out\r\n */\n\n\nfunction rotate(out, a, rad) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n out[0] = a0 * c + a2 * s;\n out[1] = a1 * c + a3 * s;\n out[2] = a0 * -s + a2 * c;\n out[3] = a1 * -s + a3 * c;\n out[4] = a4;\n out[5] = a5;\n return out;\n}\n/**\r\n * Scales the mat2d by the dimensions in the given vec2\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the matrix to translate\r\n * @param {ReadonlyVec2} v the vec2 to scale the matrix by\r\n * @returns {mat2d} out\r\n **/\n\n\nfunction scale(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0 * v0;\n out[1] = a1 * v0;\n out[2] = a2 * v1;\n out[3] = a3 * v1;\n out[4] = a4;\n out[5] = a5;\n return out;\n}\n/**\r\n * Translates the mat2d by the dimensions in the given vec2\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the matrix to translate\r\n * @param {ReadonlyVec2} v the vec2 to translate the matrix by\r\n * @returns {mat2d} out\r\n **/\n\n\nfunction translate(out, a, v) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var v0 = v[0],\n v1 = v[1];\n out[0] = a0;\n out[1] = a1;\n out[2] = a2;\n out[3] = a3;\n out[4] = a0 * v0 + a2 * v1 + a4;\n out[5] = a1 * v0 + a3 * v1 + a5;\n return out;\n}\n/**\r\n * Creates a matrix from a given angle\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2d.identity(dest);\r\n * mat2d.rotate(dest, dest, rad);\r\n *\r\n * @param {mat2d} out mat2d receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat2d} out\r\n */\n\n\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = -s;\n out[3] = c;\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n/**\r\n * Creates a matrix from a vector scaling\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2d.identity(dest);\r\n * mat2d.scale(dest, dest, vec);\r\n *\r\n * @param {mat2d} out mat2d receiving operation result\r\n * @param {ReadonlyVec2} v Scaling vector\r\n * @returns {mat2d} out\r\n */\n\n\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = v[1];\n out[4] = 0;\n out[5] = 0;\n return out;\n}\n/**\r\n * Creates a matrix from a vector translation\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat2d.identity(dest);\r\n * mat2d.translate(dest, dest, vec);\r\n *\r\n * @param {mat2d} out mat2d receiving operation result\r\n * @param {ReadonlyVec2} v Translation vector\r\n * @returns {mat2d} out\r\n */\n\n\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = v[0];\n out[5] = v[1];\n return out;\n}\n/**\r\n * Returns a string representation of a mat2d\r\n *\r\n * @param {ReadonlyMat2d} a matrix to represent as a string\r\n * @returns {String} string representation of the matrix\r\n */\n\n\nfunction str(a) {\n return \"mat2d(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \", \" + a[3] + \", \" + a[4] + \", \" + a[5] + \")\";\n}\n/**\r\n * Returns Frobenius norm of a mat2d\r\n *\r\n * @param {ReadonlyMat2d} a the matrix to calculate Frobenius norm of\r\n * @returns {Number} Frobenius norm\r\n */\n\n\nfunction frob(a) {\n return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], 1);\n}\n/**\r\n * Adds two mat2d's\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the first operand\r\n * @param {ReadonlyMat2d} b the second operand\r\n * @returns {mat2d} out\r\n */\n\n\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n return out;\n}\n/**\r\n * Subtracts matrix b from matrix a\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the first operand\r\n * @param {ReadonlyMat2d} b the second operand\r\n * @returns {mat2d} out\r\n */\n\n\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n return out;\n}\n/**\r\n * Multiply each element of the matrix by a scalar.\r\n *\r\n * @param {mat2d} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the matrix to scale\r\n * @param {Number} b amount to scale the matrix's elements by\r\n * @returns {mat2d} out\r\n */\n\n\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n return out;\n}\n/**\r\n * Adds two mat2d's after multiplying each element of the second operand by a scalar value.\r\n *\r\n * @param {mat2d} out the receiving vector\r\n * @param {ReadonlyMat2d} a the first operand\r\n * @param {ReadonlyMat2d} b the second operand\r\n * @param {Number} scale the amount to scale b's elements by before adding\r\n * @returns {mat2d} out\r\n */\n\n\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n return out;\n}\n/**\r\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyMat2d} a The first matrix.\r\n * @param {ReadonlyMat2d} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\n\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5];\n}\n/**\r\n * Returns whether or not the matrices have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyMat2d} a The first matrix.\r\n * @param {ReadonlyMat2d} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\n\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5));\n}\n/**\r\n * Alias for {@link mat2d.multiply}\r\n * @function\r\n */\n\n\nvar mul = multiply;\n/**\r\n * Alias for {@link mat2d.subtract}\r\n * @function\r\n */\n\nexports.mul = mul;\nvar sub = subtract;\nexports.sub = sub;", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.create = create;\nexports.fromMat4 = fromMat4;\nexports.clone = clone;\nexports.copy = copy;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.identity = identity;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.translate = translate;\nexports.rotate = rotate;\nexports.scale = scale;\nexports.fromTranslation = fromTranslation;\nexports.fromRotation = fromRotation;\nexports.fromScaling = fromScaling;\nexports.fromMat2d = fromMat2d;\nexports.fromQuat = fromQuat;\nexports.normalFromMat4 = normalFromMat4;\nexports.projection = projection;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.sub = exports.mul = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }\n\n/**\r\n * 3x3 Matrix\r\n * @module mat3\r\n */\n\n/**\r\n * Creates a new identity mat3\r\n *\r\n * @returns {mat3} a new 3x3 matrix\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(9);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n }\n\n out[0] = 1;\n out[4] = 1;\n out[8] = 1;\n return out;\n}\n/**\r\n * Copies the upper-left 3x3 values into the given mat3.\r\n *\r\n * @param {mat3} out the receiving 3x3 matrix\r\n * @param {ReadonlyMat4} a the source 4x4 matrix\r\n * @returns {mat3} out\r\n */\n\n\nfunction fromMat4(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[4];\n out[4] = a[5];\n out[5] = a[6];\n out[6] = a[8];\n out[7] = a[9];\n out[8] = a[10];\n return out;\n}\n/**\r\n * Creates a new mat3 initialized with values from an existing matrix\r\n *\r\n * @param {ReadonlyMat3} a matrix to clone\r\n * @returns {mat3} a new 3x3 matrix\r\n */\n\n\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n/**\r\n * Copy the values from one mat3 to another\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {mat3} out\r\n */\n\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n/**\r\n * Create a new mat3 with the given values\r\n *\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\r\n * @returns {mat3} A new mat3\r\n */\n\n\nfunction fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n/**\r\n * Set the components of a mat3 to the given values\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\r\n * @returns {mat3} out\r\n */\n\n\nfunction set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n/**\r\n * Set a mat3 to the identity matrix\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @returns {mat3} out\r\n */\n\n\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n/**\r\n * Transpose the values of a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {mat3} out\r\n */\n\n\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a12 = a[5];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a01;\n out[5] = a[7];\n out[6] = a02;\n out[7] = a12;\n } else {\n out[0] = a[0];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a[1];\n out[4] = a[4];\n out[5] = a[7];\n out[6] = a[2];\n out[7] = a[5];\n out[8] = a[8];\n }\n\n return out;\n}\n/**\r\n * Inverts a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {mat3} out\r\n */\n\n\nfunction invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n var b01 = a22 * a11 - a12 * a21;\n var b11 = -a22 * a10 + a12 * a20;\n var b21 = a21 * a10 - a11 * a20; // Calculate the determinant\n\n var det = a00 * b01 + a01 * b11 + a02 * b21;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = b01 * det;\n out[1] = (-a22 * a01 + a02 * a21) * det;\n out[2] = (a12 * a01 - a02 * a11) * det;\n out[3] = b11 * det;\n out[4] = (a22 * a00 - a02 * a20) * det;\n out[5] = (-a12 * a00 + a02 * a10) * det;\n out[6] = b21 * det;\n out[7] = (-a21 * a00 + a01 * a20) * det;\n out[8] = (a11 * a00 - a01 * a10) * det;\n return out;\n}\n/**\r\n * Calculates the adjugate of a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {mat3} out\r\n */\n\n\nfunction adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n out[0] = a11 * a22 - a12 * a21;\n out[1] = a02 * a21 - a01 * a22;\n out[2] = a01 * a12 - a02 * a11;\n out[3] = a12 * a20 - a10 * a22;\n out[4] = a00 * a22 - a02 * a20;\n out[5] = a02 * a10 - a00 * a12;\n out[6] = a10 * a21 - a11 * a20;\n out[7] = a01 * a20 - a00 * a21;\n out[8] = a00 * a11 - a01 * a10;\n return out;\n}\n/**\r\n * Calculates the determinant of a mat3\r\n *\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\n\n\nfunction determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);\n}\n/**\r\n * Multiplies two mat3's\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the first operand\r\n * @param {ReadonlyMat3} b the second operand\r\n * @returns {mat3} out\r\n */\n\n\nfunction multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n var b00 = b[0],\n b01 = b[1],\n b02 = b[2];\n var b10 = b[3],\n b11 = b[4],\n b12 = b[5];\n var b20 = b[6],\n b21 = b[7],\n b22 = b[8];\n out[0] = b00 * a00 + b01 * a10 + b02 * a20;\n out[1] = b00 * a01 + b01 * a11 + b02 * a21;\n out[2] = b00 * a02 + b01 * a12 + b02 * a22;\n out[3] = b10 * a00 + b11 * a10 + b12 * a20;\n out[4] = b10 * a01 + b11 * a11 + b12 * a21;\n out[5] = b10 * a02 + b11 * a12 + b12 * a22;\n out[6] = b20 * a00 + b21 * a10 + b22 * a20;\n out[7] = b20 * a01 + b21 * a11 + b22 * a21;\n out[8] = b20 * a02 + b21 * a12 + b22 * a22;\n return out;\n}\n/**\r\n * Translate a mat3 by the given vector\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the matrix to translate\r\n * @param {ReadonlyVec2} v vector to translate by\r\n * @returns {mat3} out\r\n */\n\n\nfunction translate(out, a, v) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n x = v[0],\n y = v[1];\n out[0] = a00;\n out[1] = a01;\n out[2] = a02;\n out[3] = a10;\n out[4] = a11;\n out[5] = a12;\n out[6] = x * a00 + y * a10 + a20;\n out[7] = x * a01 + y * a11 + a21;\n out[8] = x * a02 + y * a12 + a22;\n return out;\n}\n/**\r\n * Rotates a mat3 by the given angle\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat3} out\r\n */\n\n\nfunction rotate(out, a, rad) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c * a00 + s * a10;\n out[1] = c * a01 + s * a11;\n out[2] = c * a02 + s * a12;\n out[3] = c * a10 - s * a00;\n out[4] = c * a11 - s * a01;\n out[5] = c * a12 - s * a02;\n out[6] = a20;\n out[7] = a21;\n out[8] = a22;\n return out;\n}\n/**\r\n * Scales the mat3 by the dimensions in the given vec2\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the matrix to rotate\r\n * @param {ReadonlyVec2} v the vec2 to scale the matrix by\r\n * @returns {mat3} out\r\n **/\n\n\nfunction scale(out, a, v) {\n var x = v[0],\n y = v[1];\n out[0] = x * a[0];\n out[1] = x * a[1];\n out[2] = x * a[2];\n out[3] = y * a[3];\n out[4] = y * a[4];\n out[5] = y * a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n/**\r\n * Creates a matrix from a vector translation\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat3.identity(dest);\r\n * mat3.translate(dest, dest, vec);\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {ReadonlyVec2} v Translation vector\r\n * @returns {mat3} out\r\n */\n\n\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = v[0];\n out[7] = v[1];\n out[8] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from a given angle\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat3.identity(dest);\r\n * mat3.rotate(dest, dest, rad);\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat3} out\r\n */\n\n\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = 0;\n out[3] = -s;\n out[4] = c;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from a vector scaling\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat3.identity(dest);\r\n * mat3.scale(dest, dest, vec);\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {ReadonlyVec2} v Scaling vector\r\n * @returns {mat3} out\r\n */\n\n\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = v[1];\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n/**\r\n * Copies the values from a mat2d into a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the matrix to copy\r\n * @returns {mat3} out\r\n **/\n\n\nfunction fromMat2d(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = 0;\n out[3] = a[2];\n out[4] = a[3];\n out[5] = 0;\n out[6] = a[4];\n out[7] = a[5];\n out[8] = 1;\n return out;\n}\n/**\r\n * Calculates a 3x3 matrix from the given quaternion\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {ReadonlyQuat} q Quaternion to create matrix from\r\n *\r\n * @returns {mat3} out\r\n */\n\n\nfunction fromQuat(out, q) {\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n var xx = x * x2;\n var yx = y * x2;\n var yy = y * y2;\n var zx = z * x2;\n var zy = z * y2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n out[0] = 1 - yy - zz;\n out[3] = yx - wz;\n out[6] = zx + wy;\n out[1] = yx + wz;\n out[4] = 1 - xx - zz;\n out[7] = zy - wx;\n out[2] = zx - wy;\n out[5] = zy + wx;\n out[8] = 1 - xx - yy;\n return out;\n}\n/**\r\n * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {ReadonlyMat4} a Mat4 to derive the normal matrix from\r\n *\r\n * @returns {mat3} out\r\n */\n\n\nfunction normalFromMat4(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32; // Calculate the determinant\n\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n return out;\n}\n/**\r\n * Generates a 2D projection matrix with the given bounds\r\n *\r\n * @param {mat3} out mat3 frustum matrix will be written into\r\n * @param {number} width Width of your gl context\r\n * @param {number} height Height of gl context\r\n * @returns {mat3} out\r\n */\n\n\nfunction projection(out, width, height) {\n out[0] = 2 / width;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = -2 / height;\n out[5] = 0;\n out[6] = -1;\n out[7] = 1;\n out[8] = 1;\n return out;\n}\n/**\r\n * Returns a string representation of a mat3\r\n *\r\n * @param {ReadonlyMat3} a matrix to represent as a string\r\n * @returns {String} string representation of the matrix\r\n */\n\n\nfunction str(a) {\n return \"mat3(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \", \" + a[3] + \", \" + a[4] + \", \" + a[5] + \", \" + a[6] + \", \" + a[7] + \", \" + a[8] + \")\";\n}\n/**\r\n * Returns Frobenius norm of a mat3\r\n *\r\n * @param {ReadonlyMat3} a the matrix to calculate Frobenius norm of\r\n * @returns {Number} Frobenius norm\r\n */\n\n\nfunction frob(a) {\n return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]);\n}\n/**\r\n * Adds two mat3's\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the first operand\r\n * @param {ReadonlyMat3} b the second operand\r\n * @returns {mat3} out\r\n */\n\n\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n out[8] = a[8] + b[8];\n return out;\n}\n/**\r\n * Subtracts matrix b from matrix a\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the first operand\r\n * @param {ReadonlyMat3} b the second operand\r\n * @returns {mat3} out\r\n */\n\n\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n out[6] = a[6] - b[6];\n out[7] = a[7] - b[7];\n out[8] = a[8] - b[8];\n return out;\n}\n/**\r\n * Multiply each element of the matrix by a scalar.\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the matrix to scale\r\n * @param {Number} b amount to scale the matrix's elements by\r\n * @returns {mat3} out\r\n */\n\n\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n out[8] = a[8] * b;\n return out;\n}\n/**\r\n * Adds two mat3's after multiplying each element of the second operand by a scalar value.\r\n *\r\n * @param {mat3} out the receiving vector\r\n * @param {ReadonlyMat3} a the first operand\r\n * @param {ReadonlyMat3} b the second operand\r\n * @param {Number} scale the amount to scale b's elements by before adding\r\n * @returns {mat3} out\r\n */\n\n\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n out[6] = a[6] + b[6] * scale;\n out[7] = a[7] + b[7] * scale;\n out[8] = a[8] + b[8] * scale;\n return out;\n}\n/**\r\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyMat3} a The first matrix.\r\n * @param {ReadonlyMat3} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\n\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];\n}\n/**\r\n * Returns whether or not the matrices have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyMat3} a The first matrix.\r\n * @param {ReadonlyMat3} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\n\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7],\n a8 = a[8];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7],\n b8 = b[8];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));\n}\n/**\r\n * Alias for {@link mat3.multiply}\r\n * @function\r\n */\n\n\nvar mul = multiply;\n/**\r\n * Alias for {@link mat3.subtract}\r\n * @function\r\n */\n\nexports.mul = mul;\nvar sub = subtract;\nexports.sub = sub;", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.create = create;\nexports.clone = clone;\nexports.copy = copy;\nexports.fromValues = fromValues;\nexports.set = set;\nexports.identity = identity;\nexports.transpose = transpose;\nexports.invert = invert;\nexports.adjoint = adjoint;\nexports.determinant = determinant;\nexports.multiply = multiply;\nexports.translate = translate;\nexports.scale = scale;\nexports.rotate = rotate;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.fromTranslation = fromTranslation;\nexports.fromScaling = fromScaling;\nexports.fromRotation = fromRotation;\nexports.fromXRotation = fromXRotation;\nexports.fromYRotation = fromYRotation;\nexports.fromZRotation = fromZRotation;\nexports.fromRotationTranslation = fromRotationTranslation;\nexports.fromQuat2 = fromQuat2;\nexports.getTranslation = getTranslation;\nexports.getScaling = getScaling;\nexports.getRotation = getRotation;\nexports.fromRotationTranslationScale = fromRotationTranslationScale;\nexports.fromRotationTranslationScaleOrigin = fromRotationTranslationScaleOrigin;\nexports.fromQuat = fromQuat;\nexports.frustum = frustum;\nexports.perspective = perspective;\nexports.perspectiveFromFieldOfView = perspectiveFromFieldOfView;\nexports.ortho = ortho;\nexports.lookAt = lookAt;\nexports.targetTo = targetTo;\nexports.str = str;\nexports.frob = frob;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiplyScalar = multiplyScalar;\nexports.multiplyScalarAndAdd = multiplyScalarAndAdd;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.sub = exports.mul = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }\n\n/**\r\n * 4x4 Matrix
Format: column-major, when typed out it looks like row-major
The matrices are being post multiplied.\r\n * @module mat4\r\n */\n\n/**\r\n * Creates a new identity mat4\r\n *\r\n * @returns {mat4} a new 4x4 matrix\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(16);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n }\n\n out[0] = 1;\n out[5] = 1;\n out[10] = 1;\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a new mat4 initialized with values from an existing matrix\r\n *\r\n * @param {ReadonlyMat4} a matrix to clone\r\n * @returns {mat4} a new 4x4 matrix\r\n */\n\n\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(16);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n/**\r\n * Copy the values from one mat4 to another\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {mat4} out\r\n */\n\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n/**\r\n * Create a new mat4 with the given values\r\n *\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m03 Component in column 0, row 3 position (index 3)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 4)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 5)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 6)\r\n * @param {Number} m13 Component in column 1, row 3 position (index 7)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 8)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 9)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 10)\r\n * @param {Number} m23 Component in column 2, row 3 position (index 11)\r\n * @param {Number} m30 Component in column 3, row 0 position (index 12)\r\n * @param {Number} m31 Component in column 3, row 1 position (index 13)\r\n * @param {Number} m32 Component in column 3, row 2 position (index 14)\r\n * @param {Number} m33 Component in column 3, row 3 position (index 15)\r\n * @returns {mat4} A new mat4\r\n */\n\n\nfunction fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {\n var out = new glMatrix.ARRAY_TYPE(16);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m03;\n out[4] = m10;\n out[5] = m11;\n out[6] = m12;\n out[7] = m13;\n out[8] = m20;\n out[9] = m21;\n out[10] = m22;\n out[11] = m23;\n out[12] = m30;\n out[13] = m31;\n out[14] = m32;\n out[15] = m33;\n return out;\n}\n/**\r\n * Set the components of a mat4 to the given values\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m03 Component in column 0, row 3 position (index 3)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 4)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 5)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 6)\r\n * @param {Number} m13 Component in column 1, row 3 position (index 7)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 8)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 9)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 10)\r\n * @param {Number} m23 Component in column 2, row 3 position (index 11)\r\n * @param {Number} m30 Component in column 3, row 0 position (index 12)\r\n * @param {Number} m31 Component in column 3, row 1 position (index 13)\r\n * @param {Number} m32 Component in column 3, row 2 position (index 14)\r\n * @param {Number} m33 Component in column 3, row 3 position (index 15)\r\n * @returns {mat4} out\r\n */\n\n\nfunction set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m03;\n out[4] = m10;\n out[5] = m11;\n out[6] = m12;\n out[7] = m13;\n out[8] = m20;\n out[9] = m21;\n out[10] = m22;\n out[11] = m23;\n out[12] = m30;\n out[13] = m31;\n out[14] = m32;\n out[15] = m33;\n return out;\n}\n/**\r\n * Set a mat4 to the identity matrix\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @returns {mat4} out\r\n */\n\n\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n/**\r\n * Transpose the values of a mat4\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {mat4} out\r\n */\n\n\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a12 = a[6],\n a13 = a[7];\n var a23 = a[11];\n out[1] = a[4];\n out[2] = a[8];\n out[3] = a[12];\n out[4] = a01;\n out[6] = a[9];\n out[7] = a[13];\n out[8] = a02;\n out[9] = a12;\n out[11] = a[14];\n out[12] = a03;\n out[13] = a13;\n out[14] = a23;\n } else {\n out[0] = a[0];\n out[1] = a[4];\n out[2] = a[8];\n out[3] = a[12];\n out[4] = a[1];\n out[5] = a[5];\n out[6] = a[9];\n out[7] = a[13];\n out[8] = a[2];\n out[9] = a[6];\n out[10] = a[10];\n out[11] = a[14];\n out[12] = a[3];\n out[13] = a[7];\n out[14] = a[11];\n out[15] = a[15];\n }\n\n return out;\n}\n/**\r\n * Inverts a mat4\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {mat4} out\r\n */\n\n\nfunction invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32; // Calculate the determinant\n\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;\n out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;\n out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;\n out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;\n out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;\n out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;\n out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;\n return out;\n}\n/**\r\n * Calculates the adjugate of a mat4\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {mat4} out\r\n */\n\n\nfunction adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22);\n out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));\n out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12);\n out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));\n out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));\n out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22);\n out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));\n out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12);\n out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21);\n out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));\n out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11);\n out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));\n out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));\n out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21);\n out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));\n out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11);\n return out;\n}\n/**\r\n * Calculates the determinant of a mat4\r\n *\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\n\n\nfunction determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32; // Calculate the determinant\n\n return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n}\n/**\r\n * Multiplies two mat4s\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the first operand\r\n * @param {ReadonlyMat4} b the second operand\r\n * @returns {mat4} out\r\n */\n\n\nfunction multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15]; // Cache only the current line of the second matrix\n\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n b0 = b[4];\n b1 = b[5];\n b2 = b[6];\n b3 = b[7];\n out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n b0 = b[8];\n b1 = b[9];\n b2 = b[10];\n b3 = b[11];\n out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n b0 = b[12];\n b1 = b[13];\n b2 = b[14];\n b3 = b[15];\n out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n return out;\n}\n/**\r\n * Translate a mat4 by the given vector\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to translate\r\n * @param {ReadonlyVec3} v vector to translate by\r\n * @returns {mat4} out\r\n */\n\n\nfunction translate(out, a, v) {\n var x = v[0],\n y = v[1],\n z = v[2];\n var a00, a01, a02, a03;\n var a10, a11, a12, a13;\n var a20, a21, a22, a23;\n\n if (a === out) {\n out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];\n out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];\n out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];\n out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];\n } else {\n a00 = a[0];\n a01 = a[1];\n a02 = a[2];\n a03 = a[3];\n a10 = a[4];\n a11 = a[5];\n a12 = a[6];\n a13 = a[7];\n a20 = a[8];\n a21 = a[9];\n a22 = a[10];\n a23 = a[11];\n out[0] = a00;\n out[1] = a01;\n out[2] = a02;\n out[3] = a03;\n out[4] = a10;\n out[5] = a11;\n out[6] = a12;\n out[7] = a13;\n out[8] = a20;\n out[9] = a21;\n out[10] = a22;\n out[11] = a23;\n out[12] = a00 * x + a10 * y + a20 * z + a[12];\n out[13] = a01 * x + a11 * y + a21 * z + a[13];\n out[14] = a02 * x + a12 * y + a22 * z + a[14];\n out[15] = a03 * x + a13 * y + a23 * z + a[15];\n }\n\n return out;\n}\n/**\r\n * Scales the mat4 by the dimensions in the given vec3 not using vectorization\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to scale\r\n * @param {ReadonlyVec3} v the vec3 to scale the matrix by\r\n * @returns {mat4} out\r\n **/\n\n\nfunction scale(out, a, v) {\n var x = v[0],\n y = v[1],\n z = v[2];\n out[0] = a[0] * x;\n out[1] = a[1] * x;\n out[2] = a[2] * x;\n out[3] = a[3] * x;\n out[4] = a[4] * y;\n out[5] = a[5] * y;\n out[6] = a[6] * y;\n out[7] = a[7] * y;\n out[8] = a[8] * z;\n out[9] = a[9] * z;\n out[10] = a[10] * z;\n out[11] = a[11] * z;\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n/**\r\n * Rotates a mat4 by the given angle around the given axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @param {ReadonlyVec3} axis the axis to rotate around\r\n * @returns {mat4} out\r\n */\n\n\nfunction rotate(out, a, rad, axis) {\n var x = axis[0],\n y = axis[1],\n z = axis[2];\n var len = Math.hypot(x, y, z);\n var s, c, t;\n var a00, a01, a02, a03;\n var a10, a11, a12, a13;\n var a20, a21, a22, a23;\n var b00, b01, b02;\n var b10, b11, b12;\n var b20, b21, b22;\n\n if (len < glMatrix.EPSILON) {\n return null;\n }\n\n len = 1 / len;\n x *= len;\n y *= len;\n z *= len;\n s = Math.sin(rad);\n c = Math.cos(rad);\n t = 1 - c;\n a00 = a[0];\n a01 = a[1];\n a02 = a[2];\n a03 = a[3];\n a10 = a[4];\n a11 = a[5];\n a12 = a[6];\n a13 = a[7];\n a20 = a[8];\n a21 = a[9];\n a22 = a[10];\n a23 = a[11]; // Construct the elements of the rotation matrix\n\n b00 = x * x * t + c;\n b01 = y * x * t + z * s;\n b02 = z * x * t - y * s;\n b10 = x * y * t - z * s;\n b11 = y * y * t + c;\n b12 = z * y * t + x * s;\n b20 = x * z * t + y * s;\n b21 = y * z * t - x * s;\n b22 = z * z * t + c; // Perform rotation-specific matrix multiplication\n\n out[0] = a00 * b00 + a10 * b01 + a20 * b02;\n out[1] = a01 * b00 + a11 * b01 + a21 * b02;\n out[2] = a02 * b00 + a12 * b01 + a22 * b02;\n out[3] = a03 * b00 + a13 * b01 + a23 * b02;\n out[4] = a00 * b10 + a10 * b11 + a20 * b12;\n out[5] = a01 * b10 + a11 * b11 + a21 * b12;\n out[6] = a02 * b10 + a12 * b11 + a22 * b12;\n out[7] = a03 * b10 + a13 * b11 + a23 * b12;\n out[8] = a00 * b20 + a10 * b21 + a20 * b22;\n out[9] = a01 * b20 + a11 * b21 + a21 * b22;\n out[10] = a02 * b20 + a12 * b21 + a22 * b22;\n out[11] = a03 * b20 + a13 * b21 + a23 * b22;\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged last row\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n\n return out;\n}\n/**\r\n * Rotates a matrix by the given angle around the X axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\n\n\nfunction rotateX(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a10 = a[4];\n var a11 = a[5];\n var a12 = a[6];\n var a13 = a[7];\n var a20 = a[8];\n var a21 = a[9];\n var a22 = a[10];\n var a23 = a[11];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged rows\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n } // Perform axis-specific matrix multiplication\n\n\n out[4] = a10 * c + a20 * s;\n out[5] = a11 * c + a21 * s;\n out[6] = a12 * c + a22 * s;\n out[7] = a13 * c + a23 * s;\n out[8] = a20 * c - a10 * s;\n out[9] = a21 * c - a11 * s;\n out[10] = a22 * c - a12 * s;\n out[11] = a23 * c - a13 * s;\n return out;\n}\n/**\r\n * Rotates a matrix by the given angle around the Y axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\n\n\nfunction rotateY(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a00 = a[0];\n var a01 = a[1];\n var a02 = a[2];\n var a03 = a[3];\n var a20 = a[8];\n var a21 = a[9];\n var a22 = a[10];\n var a23 = a[11];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged rows\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n } // Perform axis-specific matrix multiplication\n\n\n out[0] = a00 * c - a20 * s;\n out[1] = a01 * c - a21 * s;\n out[2] = a02 * c - a22 * s;\n out[3] = a03 * c - a23 * s;\n out[8] = a00 * s + a20 * c;\n out[9] = a01 * s + a21 * c;\n out[10] = a02 * s + a22 * c;\n out[11] = a03 * s + a23 * c;\n return out;\n}\n/**\r\n * Rotates a matrix by the given angle around the Z axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\n\n\nfunction rotateZ(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a00 = a[0];\n var a01 = a[1];\n var a02 = a[2];\n var a03 = a[3];\n var a10 = a[4];\n var a11 = a[5];\n var a12 = a[6];\n var a13 = a[7];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged last row\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n } // Perform axis-specific matrix multiplication\n\n\n out[0] = a00 * c + a10 * s;\n out[1] = a01 * c + a11 * s;\n out[2] = a02 * c + a12 * s;\n out[3] = a03 * c + a13 * s;\n out[4] = a10 * c - a00 * s;\n out[5] = a11 * c - a01 * s;\n out[6] = a12 * c - a02 * s;\n out[7] = a13 * c - a03 * s;\n return out;\n}\n/**\r\n * Creates a matrix from a vector translation\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.translate(dest, dest, vec);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {ReadonlyVec3} v Translation vector\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = v[0];\n out[13] = v[1];\n out[14] = v[2];\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from a vector scaling\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.scale(dest, dest, vec);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {ReadonlyVec3} v Scaling vector\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = v[1];\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = v[2];\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from a given angle around a given axis\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.rotate(dest, dest, rad, axis);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @param {ReadonlyVec3} axis the axis to rotate around\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromRotation(out, rad, axis) {\n var x = axis[0],\n y = axis[1],\n z = axis[2];\n var len = Math.hypot(x, y, z);\n var s, c, t;\n\n if (len < glMatrix.EPSILON) {\n return null;\n }\n\n len = 1 / len;\n x *= len;\n y *= len;\n z *= len;\n s = Math.sin(rad);\n c = Math.cos(rad);\n t = 1 - c; // Perform rotation-specific matrix multiplication\n\n out[0] = x * x * t + c;\n out[1] = y * x * t + z * s;\n out[2] = z * x * t - y * s;\n out[3] = 0;\n out[4] = x * y * t - z * s;\n out[5] = y * y * t + c;\n out[6] = z * y * t + x * s;\n out[7] = 0;\n out[8] = x * z * t + y * s;\n out[9] = y * z * t - x * s;\n out[10] = z * z * t + c;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from the given angle around the X axis\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.rotateX(dest, dest, rad);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromXRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad); // Perform axis-specific matrix multiplication\n\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = c;\n out[6] = s;\n out[7] = 0;\n out[8] = 0;\n out[9] = -s;\n out[10] = c;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from the given angle around the Y axis\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.rotateY(dest, dest, rad);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromYRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad); // Perform axis-specific matrix multiplication\n\n out[0] = c;\n out[1] = 0;\n out[2] = -s;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = s;\n out[9] = 0;\n out[10] = c;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from the given angle around the Z axis\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.rotateZ(dest, dest, rad);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromZRotation(out, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad); // Perform axis-specific matrix multiplication\n\n out[0] = c;\n out[1] = s;\n out[2] = 0;\n out[3] = 0;\n out[4] = -s;\n out[5] = c;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from a quaternion rotation and vector translation\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.translate(dest, vec);\r\n * let quatMat = mat4.create();\r\n * quat4.toMat4(quat, quatMat);\r\n * mat4.multiply(dest, quatMat);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {quat4} q Rotation quaternion\r\n * @param {ReadonlyVec3} v Translation vector\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromRotationTranslation(out, q, v) {\n // Quaternion math\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n var xx = x * x2;\n var xy = x * y2;\n var xz = x * z2;\n var yy = y * y2;\n var yz = y * z2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n out[0] = 1 - (yy + zz);\n out[1] = xy + wz;\n out[2] = xz - wy;\n out[3] = 0;\n out[4] = xy - wz;\n out[5] = 1 - (xx + zz);\n out[6] = yz + wx;\n out[7] = 0;\n out[8] = xz + wy;\n out[9] = yz - wx;\n out[10] = 1 - (xx + yy);\n out[11] = 0;\n out[12] = v[0];\n out[13] = v[1];\n out[14] = v[2];\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a new mat4 from a dual quat.\r\n *\r\n * @param {mat4} out Matrix\r\n * @param {ReadonlyQuat2} a Dual Quaternion\r\n * @returns {mat4} mat4 receiving operation result\r\n */\n\n\nfunction fromQuat2(out, a) {\n var translation = new glMatrix.ARRAY_TYPE(3);\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7];\n var magnitude = bx * bx + by * by + bz * bz + bw * bw; //Only scale if it makes sense\n\n if (magnitude > 0) {\n translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2 / magnitude;\n translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2 / magnitude;\n translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2 / magnitude;\n } else {\n translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;\n translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;\n translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;\n }\n\n fromRotationTranslation(out, a, translation);\n return out;\n}\n/**\r\n * Returns the translation vector component of a transformation\r\n * matrix. If a matrix is built with fromRotationTranslation,\r\n * the returned vector will be the same as the translation vector\r\n * originally supplied.\r\n * @param {vec3} out Vector to receive translation component\r\n * @param {ReadonlyMat4} mat Matrix to be decomposed (input)\r\n * @return {vec3} out\r\n */\n\n\nfunction getTranslation(out, mat) {\n out[0] = mat[12];\n out[1] = mat[13];\n out[2] = mat[14];\n return out;\n}\n/**\r\n * Returns the scaling factor component of a transformation\r\n * matrix. If a matrix is built with fromRotationTranslationScale\r\n * with a normalized Quaternion paramter, the returned vector will be\r\n * the same as the scaling vector\r\n * originally supplied.\r\n * @param {vec3} out Vector to receive scaling factor component\r\n * @param {ReadonlyMat4} mat Matrix to be decomposed (input)\r\n * @return {vec3} out\r\n */\n\n\nfunction getScaling(out, mat) {\n var m11 = mat[0];\n var m12 = mat[1];\n var m13 = mat[2];\n var m21 = mat[4];\n var m22 = mat[5];\n var m23 = mat[6];\n var m31 = mat[8];\n var m32 = mat[9];\n var m33 = mat[10];\n out[0] = Math.hypot(m11, m12, m13);\n out[1] = Math.hypot(m21, m22, m23);\n out[2] = Math.hypot(m31, m32, m33);\n return out;\n}\n/**\r\n * Returns a quaternion representing the rotational component\r\n * of a transformation matrix. If a matrix is built with\r\n * fromRotationTranslation, the returned quaternion will be the\r\n * same as the quaternion originally supplied.\r\n * @param {quat} out Quaternion to receive the rotation component\r\n * @param {ReadonlyMat4} mat Matrix to be decomposed (input)\r\n * @return {quat} out\r\n */\n\n\nfunction getRotation(out, mat) {\n var scaling = new glMatrix.ARRAY_TYPE(3);\n getScaling(scaling, mat);\n var is1 = 1 / scaling[0];\n var is2 = 1 / scaling[1];\n var is3 = 1 / scaling[2];\n var sm11 = mat[0] * is1;\n var sm12 = mat[1] * is2;\n var sm13 = mat[2] * is3;\n var sm21 = mat[4] * is1;\n var sm22 = mat[5] * is2;\n var sm23 = mat[6] * is3;\n var sm31 = mat[8] * is1;\n var sm32 = mat[9] * is2;\n var sm33 = mat[10] * is3;\n var trace = sm11 + sm22 + sm33;\n var S = 0;\n\n if (trace > 0) {\n S = Math.sqrt(trace + 1.0) * 2;\n out[3] = 0.25 * S;\n out[0] = (sm23 - sm32) / S;\n out[1] = (sm31 - sm13) / S;\n out[2] = (sm12 - sm21) / S;\n } else if (sm11 > sm22 && sm11 > sm33) {\n S = Math.sqrt(1.0 + sm11 - sm22 - sm33) * 2;\n out[3] = (sm23 - sm32) / S;\n out[0] = 0.25 * S;\n out[1] = (sm12 + sm21) / S;\n out[2] = (sm31 + sm13) / S;\n } else if (sm22 > sm33) {\n S = Math.sqrt(1.0 + sm22 - sm11 - sm33) * 2;\n out[3] = (sm31 - sm13) / S;\n out[0] = (sm12 + sm21) / S;\n out[1] = 0.25 * S;\n out[2] = (sm23 + sm32) / S;\n } else {\n S = Math.sqrt(1.0 + sm33 - sm11 - sm22) * 2;\n out[3] = (sm12 - sm21) / S;\n out[0] = (sm31 + sm13) / S;\n out[1] = (sm23 + sm32) / S;\n out[2] = 0.25 * S;\n }\n\n return out;\n}\n/**\r\n * Creates a matrix from a quaternion rotation, vector translation and vector scale\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.translate(dest, vec);\r\n * let quatMat = mat4.create();\r\n * quat4.toMat4(quat, quatMat);\r\n * mat4.multiply(dest, quatMat);\r\n * mat4.scale(dest, scale)\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {quat4} q Rotation quaternion\r\n * @param {ReadonlyVec3} v Translation vector\r\n * @param {ReadonlyVec3} s Scaling vector\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromRotationTranslationScale(out, q, v, s) {\n // Quaternion math\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n var xx = x * x2;\n var xy = x * y2;\n var xz = x * z2;\n var yy = y * y2;\n var yz = y * z2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n var sx = s[0];\n var sy = s[1];\n var sz = s[2];\n out[0] = (1 - (yy + zz)) * sx;\n out[1] = (xy + wz) * sx;\n out[2] = (xz - wy) * sx;\n out[3] = 0;\n out[4] = (xy - wz) * sy;\n out[5] = (1 - (xx + zz)) * sy;\n out[6] = (yz + wx) * sy;\n out[7] = 0;\n out[8] = (xz + wy) * sz;\n out[9] = (yz - wx) * sz;\n out[10] = (1 - (xx + yy)) * sz;\n out[11] = 0;\n out[12] = v[0];\n out[13] = v[1];\n out[14] = v[2];\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat4.identity(dest);\r\n * mat4.translate(dest, vec);\r\n * mat4.translate(dest, origin);\r\n * let quatMat = mat4.create();\r\n * quat4.toMat4(quat, quatMat);\r\n * mat4.multiply(dest, quatMat);\r\n * mat4.scale(dest, scale)\r\n * mat4.translate(dest, negativeOrigin);\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {quat4} q Rotation quaternion\r\n * @param {ReadonlyVec3} v Translation vector\r\n * @param {ReadonlyVec3} s Scaling vector\r\n * @param {ReadonlyVec3} o The origin vector around which to scale and rotate\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromRotationTranslationScaleOrigin(out, q, v, s, o) {\n // Quaternion math\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n var xx = x * x2;\n var xy = x * y2;\n var xz = x * z2;\n var yy = y * y2;\n var yz = y * z2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n var sx = s[0];\n var sy = s[1];\n var sz = s[2];\n var ox = o[0];\n var oy = o[1];\n var oz = o[2];\n var out0 = (1 - (yy + zz)) * sx;\n var out1 = (xy + wz) * sx;\n var out2 = (xz - wy) * sx;\n var out4 = (xy - wz) * sy;\n var out5 = (1 - (xx + zz)) * sy;\n var out6 = (yz + wx) * sy;\n var out8 = (xz + wy) * sz;\n var out9 = (yz - wx) * sz;\n var out10 = (1 - (xx + yy)) * sz;\n out[0] = out0;\n out[1] = out1;\n out[2] = out2;\n out[3] = 0;\n out[4] = out4;\n out[5] = out5;\n out[6] = out6;\n out[7] = 0;\n out[8] = out8;\n out[9] = out9;\n out[10] = out10;\n out[11] = 0;\n out[12] = v[0] + ox - (out0 * ox + out4 * oy + out8 * oz);\n out[13] = v[1] + oy - (out1 * ox + out5 * oy + out9 * oz);\n out[14] = v[2] + oz - (out2 * ox + out6 * oy + out10 * oz);\n out[15] = 1;\n return out;\n}\n/**\r\n * Calculates a 4x4 matrix from the given quaternion\r\n *\r\n * @param {mat4} out mat4 receiving operation result\r\n * @param {ReadonlyQuat} q Quaternion to create matrix from\r\n *\r\n * @returns {mat4} out\r\n */\n\n\nfunction fromQuat(out, q) {\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n var xx = x * x2;\n var yx = y * x2;\n var yy = y * y2;\n var zx = z * x2;\n var zy = z * y2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n out[0] = 1 - yy - zz;\n out[1] = yx + wz;\n out[2] = zx - wy;\n out[3] = 0;\n out[4] = yx - wz;\n out[5] = 1 - xx - zz;\n out[6] = zy + wx;\n out[7] = 0;\n out[8] = zx + wy;\n out[9] = zy - wx;\n out[10] = 1 - xx - yy;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n/**\r\n * Generates a frustum matrix with the given bounds\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {Number} left Left bound of the frustum\r\n * @param {Number} right Right bound of the frustum\r\n * @param {Number} bottom Bottom bound of the frustum\r\n * @param {Number} top Top bound of the frustum\r\n * @param {Number} near Near bound of the frustum\r\n * @param {Number} far Far bound of the frustum\r\n * @returns {mat4} out\r\n */\n\n\nfunction frustum(out, left, right, bottom, top, near, far) {\n var rl = 1 / (right - left);\n var tb = 1 / (top - bottom);\n var nf = 1 / (near - far);\n out[0] = near * 2 * rl;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = near * 2 * tb;\n out[6] = 0;\n out[7] = 0;\n out[8] = (right + left) * rl;\n out[9] = (top + bottom) * tb;\n out[10] = (far + near) * nf;\n out[11] = -1;\n out[12] = 0;\n out[13] = 0;\n out[14] = far * near * 2 * nf;\n out[15] = 0;\n return out;\n}\n/**\r\n * Generates a perspective projection matrix with the given bounds.\r\n * Passing null/undefined/no value for far will generate infinite projection matrix.\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {number} fovy Vertical field of view in radians\r\n * @param {number} aspect Aspect ratio. typically viewport width/height\r\n * @param {number} near Near bound of the frustum\r\n * @param {number} far Far bound of the frustum, can be null or Infinity\r\n * @returns {mat4} out\r\n */\n\n\nfunction perspective(out, fovy, aspect, near, far) {\n var f = 1.0 / Math.tan(fovy / 2),\n nf;\n out[0] = f / aspect;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = f;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[11] = -1;\n out[12] = 0;\n out[13] = 0;\n out[15] = 0;\n\n if (far != null && far !== Infinity) {\n nf = 1 / (near - far);\n out[10] = (far + near) * nf;\n out[14] = 2 * far * near * nf;\n } else {\n out[10] = -1;\n out[14] = -2 * near;\n }\n\n return out;\n}\n/**\r\n * Generates a perspective projection matrix with the given field of view.\r\n * This is primarily useful for generating projection matrices to be used\r\n * with the still experiemental WebVR API.\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees\r\n * @param {number} near Near bound of the frustum\r\n * @param {number} far Far bound of the frustum\r\n * @returns {mat4} out\r\n */\n\n\nfunction perspectiveFromFieldOfView(out, fov, near, far) {\n var upTan = Math.tan(fov.upDegrees * Math.PI / 180.0);\n var downTan = Math.tan(fov.downDegrees * Math.PI / 180.0);\n var leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0);\n var rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0);\n var xScale = 2.0 / (leftTan + rightTan);\n var yScale = 2.0 / (upTan + downTan);\n out[0] = xScale;\n out[1] = 0.0;\n out[2] = 0.0;\n out[3] = 0.0;\n out[4] = 0.0;\n out[5] = yScale;\n out[6] = 0.0;\n out[7] = 0.0;\n out[8] = -((leftTan - rightTan) * xScale * 0.5);\n out[9] = (upTan - downTan) * yScale * 0.5;\n out[10] = far / (near - far);\n out[11] = -1.0;\n out[12] = 0.0;\n out[13] = 0.0;\n out[14] = far * near / (near - far);\n out[15] = 0.0;\n return out;\n}\n/**\r\n * Generates a orthogonal projection matrix with the given bounds\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {number} left Left bound of the frustum\r\n * @param {number} right Right bound of the frustum\r\n * @param {number} bottom Bottom bound of the frustum\r\n * @param {number} top Top bound of the frustum\r\n * @param {number} near Near bound of the frustum\r\n * @param {number} far Far bound of the frustum\r\n * @returns {mat4} out\r\n */\n\n\nfunction ortho(out, left, right, bottom, top, near, far) {\n var lr = 1 / (left - right);\n var bt = 1 / (bottom - top);\n var nf = 1 / (near - far);\n out[0] = -2 * lr;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = -2 * bt;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 2 * nf;\n out[11] = 0;\n out[12] = (left + right) * lr;\n out[13] = (top + bottom) * bt;\n out[14] = (far + near) * nf;\n out[15] = 1;\n return out;\n}\n/**\r\n * Generates a look-at matrix with the given eye position, focal point, and up axis.\r\n * If you want a matrix that actually makes an object look at another object, you should use targetTo instead.\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {ReadonlyVec3} eye Position of the viewer\r\n * @param {ReadonlyVec3} center Point the viewer is looking at\r\n * @param {ReadonlyVec3} up vec3 pointing up\r\n * @returns {mat4} out\r\n */\n\n\nfunction lookAt(out, eye, center, up) {\n var x0, x1, x2, y0, y1, y2, z0, z1, z2, len;\n var eyex = eye[0];\n var eyey = eye[1];\n var eyez = eye[2];\n var upx = up[0];\n var upy = up[1];\n var upz = up[2];\n var centerx = center[0];\n var centery = center[1];\n var centerz = center[2];\n\n if (Math.abs(eyex - centerx) < glMatrix.EPSILON && Math.abs(eyey - centery) < glMatrix.EPSILON && Math.abs(eyez - centerz) < glMatrix.EPSILON) {\n return identity(out);\n }\n\n z0 = eyex - centerx;\n z1 = eyey - centery;\n z2 = eyez - centerz;\n len = 1 / Math.hypot(z0, z1, z2);\n z0 *= len;\n z1 *= len;\n z2 *= len;\n x0 = upy * z2 - upz * z1;\n x1 = upz * z0 - upx * z2;\n x2 = upx * z1 - upy * z0;\n len = Math.hypot(x0, x1, x2);\n\n if (!len) {\n x0 = 0;\n x1 = 0;\n x2 = 0;\n } else {\n len = 1 / len;\n x0 *= len;\n x1 *= len;\n x2 *= len;\n }\n\n y0 = z1 * x2 - z2 * x1;\n y1 = z2 * x0 - z0 * x2;\n y2 = z0 * x1 - z1 * x0;\n len = Math.hypot(y0, y1, y2);\n\n if (!len) {\n y0 = 0;\n y1 = 0;\n y2 = 0;\n } else {\n len = 1 / len;\n y0 *= len;\n y1 *= len;\n y2 *= len;\n }\n\n out[0] = x0;\n out[1] = y0;\n out[2] = z0;\n out[3] = 0;\n out[4] = x1;\n out[5] = y1;\n out[6] = z1;\n out[7] = 0;\n out[8] = x2;\n out[9] = y2;\n out[10] = z2;\n out[11] = 0;\n out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);\n out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);\n out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);\n out[15] = 1;\n return out;\n}\n/**\r\n * Generates a matrix that makes something look at something else.\r\n *\r\n * @param {mat4} out mat4 frustum matrix will be written into\r\n * @param {ReadonlyVec3} eye Position of the viewer\r\n * @param {ReadonlyVec3} center Point the viewer is looking at\r\n * @param {ReadonlyVec3} up vec3 pointing up\r\n * @returns {mat4} out\r\n */\n\n\nfunction targetTo(out, eye, target, up) {\n var eyex = eye[0],\n eyey = eye[1],\n eyez = eye[2],\n upx = up[0],\n upy = up[1],\n upz = up[2];\n var z0 = eyex - target[0],\n z1 = eyey - target[1],\n z2 = eyez - target[2];\n var len = z0 * z0 + z1 * z1 + z2 * z2;\n\n if (len > 0) {\n len = 1 / Math.sqrt(len);\n z0 *= len;\n z1 *= len;\n z2 *= len;\n }\n\n var x0 = upy * z2 - upz * z1,\n x1 = upz * z0 - upx * z2,\n x2 = upx * z1 - upy * z0;\n len = x0 * x0 + x1 * x1 + x2 * x2;\n\n if (len > 0) {\n len = 1 / Math.sqrt(len);\n x0 *= len;\n x1 *= len;\n x2 *= len;\n }\n\n out[0] = x0;\n out[1] = x1;\n out[2] = x2;\n out[3] = 0;\n out[4] = z1 * x2 - z2 * x1;\n out[5] = z2 * x0 - z0 * x2;\n out[6] = z0 * x1 - z1 * x0;\n out[7] = 0;\n out[8] = z0;\n out[9] = z1;\n out[10] = z2;\n out[11] = 0;\n out[12] = eyex;\n out[13] = eyey;\n out[14] = eyez;\n out[15] = 1;\n return out;\n}\n/**\r\n * Returns a string representation of a mat4\r\n *\r\n * @param {ReadonlyMat4} a matrix to represent as a string\r\n * @returns {String} string representation of the matrix\r\n */\n\n\nfunction str(a) {\n return \"mat4(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \", \" + a[3] + \", \" + a[4] + \", \" + a[5] + \", \" + a[6] + \", \" + a[7] + \", \" + a[8] + \", \" + a[9] + \", \" + a[10] + \", \" + a[11] + \", \" + a[12] + \", \" + a[13] + \", \" + a[14] + \", \" + a[15] + \")\";\n}\n/**\r\n * Returns Frobenius norm of a mat4\r\n *\r\n * @param {ReadonlyMat4} a the matrix to calculate Frobenius norm of\r\n * @returns {Number} Frobenius norm\r\n */\n\n\nfunction frob(a) {\n return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15]);\n}\n/**\r\n * Adds two mat4's\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the first operand\r\n * @param {ReadonlyMat4} b the second operand\r\n * @returns {mat4} out\r\n */\n\n\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n out[8] = a[8] + b[8];\n out[9] = a[9] + b[9];\n out[10] = a[10] + b[10];\n out[11] = a[11] + b[11];\n out[12] = a[12] + b[12];\n out[13] = a[13] + b[13];\n out[14] = a[14] + b[14];\n out[15] = a[15] + b[15];\n return out;\n}\n/**\r\n * Subtracts matrix b from matrix a\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the first operand\r\n * @param {ReadonlyMat4} b the second operand\r\n * @returns {mat4} out\r\n */\n\n\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n out[6] = a[6] - b[6];\n out[7] = a[7] - b[7];\n out[8] = a[8] - b[8];\n out[9] = a[9] - b[9];\n out[10] = a[10] - b[10];\n out[11] = a[11] - b[11];\n out[12] = a[12] - b[12];\n out[13] = a[13] - b[13];\n out[14] = a[14] - b[14];\n out[15] = a[15] - b[15];\n return out;\n}\n/**\r\n * Multiply each element of the matrix by a scalar.\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to scale\r\n * @param {Number} b amount to scale the matrix's elements by\r\n * @returns {mat4} out\r\n */\n\n\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n out[8] = a[8] * b;\n out[9] = a[9] * b;\n out[10] = a[10] * b;\n out[11] = a[11] * b;\n out[12] = a[12] * b;\n out[13] = a[13] * b;\n out[14] = a[14] * b;\n out[15] = a[15] * b;\n return out;\n}\n/**\r\n * Adds two mat4's after multiplying each element of the second operand by a scalar value.\r\n *\r\n * @param {mat4} out the receiving vector\r\n * @param {ReadonlyMat4} a the first operand\r\n * @param {ReadonlyMat4} b the second operand\r\n * @param {Number} scale the amount to scale b's elements by before adding\r\n * @returns {mat4} out\r\n */\n\n\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n out[6] = a[6] + b[6] * scale;\n out[7] = a[7] + b[7] * scale;\n out[8] = a[8] + b[8] * scale;\n out[9] = a[9] + b[9] * scale;\n out[10] = a[10] + b[10] * scale;\n out[11] = a[11] + b[11] * scale;\n out[12] = a[12] + b[12] * scale;\n out[13] = a[13] + b[13] * scale;\n out[14] = a[14] + b[14] * scale;\n out[15] = a[15] + b[15] * scale;\n return out;\n}\n/**\r\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyMat4} a The first matrix.\r\n * @param {ReadonlyMat4} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\n\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15];\n}\n/**\r\n * Returns whether or not the matrices have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyMat4} a The first matrix.\r\n * @param {ReadonlyMat4} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\n\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7];\n var a8 = a[8],\n a9 = a[9],\n a10 = a[10],\n a11 = a[11];\n var a12 = a[12],\n a13 = a[13],\n a14 = a[14],\n a15 = a[15];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n var b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7];\n var b8 = b[8],\n b9 = b[9],\n b10 = b[10],\n b11 = b[11];\n var b12 = b[12],\n b13 = b[13],\n b14 = b[14],\n b15 = b[15];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15));\n}\n/**\r\n * Alias for {@link mat4.multiply}\r\n * @function\r\n */\n\n\nvar mul = multiply;\n/**\r\n * Alias for {@link mat4.subtract}\r\n * @function\r\n */\n\nexports.mul = mul;\nvar sub = subtract;\nexports.sub = sub;", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.create = create;\nexports.clone = clone;\nexports.length = length;\nexports.fromValues = fromValues;\nexports.copy = copy;\nexports.set = set;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiply = multiply;\nexports.divide = divide;\nexports.ceil = ceil;\nexports.floor = floor;\nexports.min = min;\nexports.max = max;\nexports.round = round;\nexports.scale = scale;\nexports.scaleAndAdd = scaleAndAdd;\nexports.distance = distance;\nexports.squaredDistance = squaredDistance;\nexports.squaredLength = squaredLength;\nexports.negate = negate;\nexports.inverse = inverse;\nexports.normalize = normalize;\nexports.dot = dot;\nexports.cross = cross;\nexports.lerp = lerp;\nexports.hermite = hermite;\nexports.bezier = bezier;\nexports.random = random;\nexports.transformMat4 = transformMat4;\nexports.transformMat3 = transformMat3;\nexports.transformQuat = transformQuat;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.angle = angle;\nexports.zero = zero;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }\n\n/**\r\n * 3 Dimensional Vector\r\n * @module vec3\r\n */\n\n/**\r\n * Creates a new, empty vec3\r\n *\r\n * @returns {vec3} a new 3D vector\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(3);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n }\n\n return out;\n}\n/**\r\n * Creates a new vec3 initialized with values from an existing vector\r\n *\r\n * @param {ReadonlyVec3} a vector to clone\r\n * @returns {vec3} a new 3D vector\r\n */\n\n\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n return out;\n}\n/**\r\n * Calculates the length of a vec3\r\n *\r\n * @param {ReadonlyVec3} a vector to calculate length of\r\n * @returns {Number} length of a\r\n */\n\n\nfunction length(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n return Math.hypot(x, y, z);\n}\n/**\r\n * Creates a new vec3 initialized with the given values\r\n *\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @returns {vec3} a new 3D vector\r\n */\n\n\nfunction fromValues(x, y, z) {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = x;\n out[1] = y;\n out[2] = z;\n return out;\n}\n/**\r\n * Copy the values from one vec3 to another\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the source vector\r\n * @returns {vec3} out\r\n */\n\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n return out;\n}\n/**\r\n * Set the components of a vec3 to the given values\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @returns {vec3} out\r\n */\n\n\nfunction set(out, x, y, z) {\n out[0] = x;\n out[1] = y;\n out[2] = z;\n return out;\n}\n/**\r\n * Adds two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {vec3} out\r\n */\n\n\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n return out;\n}\n/**\r\n * Subtracts vector b from vector a\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {vec3} out\r\n */\n\n\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n return out;\n}\n/**\r\n * Multiplies two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {vec3} out\r\n */\n\n\nfunction multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n out[2] = a[2] * b[2];\n return out;\n}\n/**\r\n * Divides two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {vec3} out\r\n */\n\n\nfunction divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n out[2] = a[2] / b[2];\n return out;\n}\n/**\r\n * Math.ceil the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a vector to ceil\r\n * @returns {vec3} out\r\n */\n\n\nfunction ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n out[2] = Math.ceil(a[2]);\n return out;\n}\n/**\r\n * Math.floor the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a vector to floor\r\n * @returns {vec3} out\r\n */\n\n\nfunction floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n out[2] = Math.floor(a[2]);\n return out;\n}\n/**\r\n * Returns the minimum of two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {vec3} out\r\n */\n\n\nfunction min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n out[2] = Math.min(a[2], b[2]);\n return out;\n}\n/**\r\n * Returns the maximum of two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {vec3} out\r\n */\n\n\nfunction max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n out[2] = Math.max(a[2], b[2]);\n return out;\n}\n/**\r\n * Math.round the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a vector to round\r\n * @returns {vec3} out\r\n */\n\n\nfunction round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n out[2] = Math.round(a[2]);\n return out;\n}\n/**\r\n * Scales a vec3 by a scalar number\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the vector to scale\r\n * @param {Number} b amount to scale the vector by\r\n * @returns {vec3} out\r\n */\n\n\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n return out;\n}\n/**\r\n * Adds two vec3's after scaling the second operand by a scalar value\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @param {Number} scale the amount to scale b by before adding\r\n * @returns {vec3} out\r\n */\n\n\nfunction scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n return out;\n}\n/**\r\n * Calculates the euclidian distance between two vec3's\r\n *\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {Number} distance between a and b\r\n */\n\n\nfunction distance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n return Math.hypot(x, y, z);\n}\n/**\r\n * Calculates the squared euclidian distance between two vec3's\r\n *\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {Number} squared distance between a and b\r\n */\n\n\nfunction squaredDistance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n return x * x + y * y + z * z;\n}\n/**\r\n * Calculates the squared length of a vec3\r\n *\r\n * @param {ReadonlyVec3} a vector to calculate squared length of\r\n * @returns {Number} squared length of a\r\n */\n\n\nfunction squaredLength(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n return x * x + y * y + z * z;\n}\n/**\r\n * Negates the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a vector to negate\r\n * @returns {vec3} out\r\n */\n\n\nfunction negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n return out;\n}\n/**\r\n * Returns the inverse of the components of a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a vector to invert\r\n * @returns {vec3} out\r\n */\n\n\nfunction inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n out[2] = 1.0 / a[2];\n return out;\n}\n/**\r\n * Normalize a vec3\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a vector to normalize\r\n * @returns {vec3} out\r\n */\n\n\nfunction normalize(out, a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var len = x * x + y * y + z * z;\n\n if (len > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len = 1 / Math.sqrt(len);\n }\n\n out[0] = a[0] * len;\n out[1] = a[1] * len;\n out[2] = a[2] * len;\n return out;\n}\n/**\r\n * Calculates the dot product of two vec3's\r\n *\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {Number} dot product of a and b\r\n */\n\n\nfunction dot(a, b) {\n return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];\n}\n/**\r\n * Computes the cross product of two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @returns {vec3} out\r\n */\n\n\nfunction cross(out, a, b) {\n var ax = a[0],\n ay = a[1],\n az = a[2];\n var bx = b[0],\n by = b[1],\n bz = b[2];\n out[0] = ay * bz - az * by;\n out[1] = az * bx - ax * bz;\n out[2] = ax * by - ay * bx;\n return out;\n}\n/**\r\n * Performs a linear interpolation between two vec3's\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec3} out\r\n */\n\n\nfunction lerp(out, a, b, t) {\n var ax = a[0];\n var ay = a[1];\n var az = a[2];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n out[2] = az + t * (b[2] - az);\n return out;\n}\n/**\r\n * Performs a hermite interpolation with two control points\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @param {ReadonlyVec3} c the third operand\r\n * @param {ReadonlyVec3} d the fourth operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec3} out\r\n */\n\n\nfunction hermite(out, a, b, c, d, t) {\n var factorTimes2 = t * t;\n var factor1 = factorTimes2 * (2 * t - 3) + 1;\n var factor2 = factorTimes2 * (t - 2) + t;\n var factor3 = factorTimes2 * (t - 1);\n var factor4 = factorTimes2 * (3 - 2 * t);\n out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;\n out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;\n out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;\n return out;\n}\n/**\r\n * Performs a bezier interpolation with two control points\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the first operand\r\n * @param {ReadonlyVec3} b the second operand\r\n * @param {ReadonlyVec3} c the third operand\r\n * @param {ReadonlyVec3} d the fourth operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec3} out\r\n */\n\n\nfunction bezier(out, a, b, c, d, t) {\n var inverseFactor = 1 - t;\n var inverseFactorTimesTwo = inverseFactor * inverseFactor;\n var factorTimes2 = t * t;\n var factor1 = inverseFactorTimesTwo * inverseFactor;\n var factor2 = 3 * t * inverseFactorTimesTwo;\n var factor3 = 3 * factorTimes2 * inverseFactor;\n var factor4 = factorTimes2 * t;\n out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;\n out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;\n out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;\n return out;\n}\n/**\r\n * Generates a random vector with the given scale\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\r\n * @returns {vec3} out\r\n */\n\n\nfunction random(out, scale) {\n scale = scale || 1.0;\n var r = glMatrix.RANDOM() * 2.0 * Math.PI;\n var z = glMatrix.RANDOM() * 2.0 - 1.0;\n var zScale = Math.sqrt(1.0 - z * z) * scale;\n out[0] = Math.cos(r) * zScale;\n out[1] = Math.sin(r) * zScale;\n out[2] = z * scale;\n return out;\n}\n/**\r\n * Transforms the vec3 with a mat4.\r\n * 4th vector component is implicitly '1'\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the vector to transform\r\n * @param {ReadonlyMat4} m matrix to transform with\r\n * @returns {vec3} out\r\n */\n\n\nfunction transformMat4(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2];\n var w = m[3] * x + m[7] * y + m[11] * z + m[15];\n w = w || 1.0;\n out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;\n out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;\n out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;\n return out;\n}\n/**\r\n * Transforms the vec3 with a mat3.\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the vector to transform\r\n * @param {ReadonlyMat3} m the 3x3 matrix to transform with\r\n * @returns {vec3} out\r\n */\n\n\nfunction transformMat3(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2];\n out[0] = x * m[0] + y * m[3] + z * m[6];\n out[1] = x * m[1] + y * m[4] + z * m[7];\n out[2] = x * m[2] + y * m[5] + z * m[8];\n return out;\n}\n/**\r\n * Transforms the vec3 with a quat\r\n * Can also be used for dual quaternions. (Multiply it with the real part)\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec3} a the vector to transform\r\n * @param {ReadonlyQuat} q quaternion to transform with\r\n * @returns {vec3} out\r\n */\n\n\nfunction transformQuat(out, a, q) {\n // benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3];\n var x = a[0],\n y = a[1],\n z = a[2]; // var qvec = [qx, qy, qz];\n // var uv = vec3.cross([], qvec, a);\n\n var uvx = qy * z - qz * y,\n uvy = qz * x - qx * z,\n uvz = qx * y - qy * x; // var uuv = vec3.cross([], qvec, uv);\n\n var uuvx = qy * uvz - qz * uvy,\n uuvy = qz * uvx - qx * uvz,\n uuvz = qx * uvy - qy * uvx; // vec3.scale(uv, uv, 2 * w);\n\n var w2 = qw * 2;\n uvx *= w2;\n uvy *= w2;\n uvz *= w2; // vec3.scale(uuv, uuv, 2);\n\n uuvx *= 2;\n uuvy *= 2;\n uuvz *= 2; // return vec3.add(out, a, vec3.add(out, uv, uuv));\n\n out[0] = x + uvx + uuvx;\n out[1] = y + uvy + uuvy;\n out[2] = z + uvz + uuvz;\n return out;\n}\n/**\r\n * Rotate a 3D vector around the x-axis\r\n * @param {vec3} out The receiving vec3\r\n * @param {ReadonlyVec3} a The vec3 point to rotate\r\n * @param {ReadonlyVec3} b The origin of the rotation\r\n * @param {Number} rad The angle of rotation in radians\r\n * @returns {vec3} out\r\n */\n\n\nfunction rotateX(out, a, b, rad) {\n var p = [],\n r = []; //Translate point to the origin\n\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2]; //perform rotation\n\n r[0] = p[0];\n r[1] = p[1] * Math.cos(rad) - p[2] * Math.sin(rad);\n r[2] = p[1] * Math.sin(rad) + p[2] * Math.cos(rad); //translate to correct position\n\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n return out;\n}\n/**\r\n * Rotate a 3D vector around the y-axis\r\n * @param {vec3} out The receiving vec3\r\n * @param {ReadonlyVec3} a The vec3 point to rotate\r\n * @param {ReadonlyVec3} b The origin of the rotation\r\n * @param {Number} rad The angle of rotation in radians\r\n * @returns {vec3} out\r\n */\n\n\nfunction rotateY(out, a, b, rad) {\n var p = [],\n r = []; //Translate point to the origin\n\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2]; //perform rotation\n\n r[0] = p[2] * Math.sin(rad) + p[0] * Math.cos(rad);\n r[1] = p[1];\n r[2] = p[2] * Math.cos(rad) - p[0] * Math.sin(rad); //translate to correct position\n\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n return out;\n}\n/**\r\n * Rotate a 3D vector around the z-axis\r\n * @param {vec3} out The receiving vec3\r\n * @param {ReadonlyVec3} a The vec3 point to rotate\r\n * @param {ReadonlyVec3} b The origin of the rotation\r\n * @param {Number} rad The angle of rotation in radians\r\n * @returns {vec3} out\r\n */\n\n\nfunction rotateZ(out, a, b, rad) {\n var p = [],\n r = []; //Translate point to the origin\n\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2]; //perform rotation\n\n r[0] = p[0] * Math.cos(rad) - p[1] * Math.sin(rad);\n r[1] = p[0] * Math.sin(rad) + p[1] * Math.cos(rad);\n r[2] = p[2]; //translate to correct position\n\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n return out;\n}\n/**\r\n * Get the angle between two 3D vectors\r\n * @param {ReadonlyVec3} a The first operand\r\n * @param {ReadonlyVec3} b The second operand\r\n * @returns {Number} The angle in radians\r\n */\n\n\nfunction angle(a, b) {\n var ax = a[0],\n ay = a[1],\n az = a[2],\n bx = b[0],\n by = b[1],\n bz = b[2],\n mag1 = Math.sqrt(ax * ax + ay * ay + az * az),\n mag2 = Math.sqrt(bx * bx + by * by + bz * bz),\n mag = mag1 * mag2,\n cosine = mag && dot(a, b) / mag;\n return Math.acos(Math.min(Math.max(cosine, -1), 1));\n}\n/**\r\n * Set the components of a vec3 to zero\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @returns {vec3} out\r\n */\n\n\nfunction zero(out) {\n out[0] = 0.0;\n out[1] = 0.0;\n out[2] = 0.0;\n return out;\n}\n/**\r\n * Returns a string representation of a vector\r\n *\r\n * @param {ReadonlyVec3} a vector to represent as a string\r\n * @returns {String} string representation of the vector\r\n */\n\n\nfunction str(a) {\n return \"vec3(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \")\";\n}\n/**\r\n * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyVec3} a The first vector.\r\n * @param {ReadonlyVec3} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\n\n\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];\n}\n/**\r\n * Returns whether or not the vectors have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyVec3} a The first vector.\r\n * @param {ReadonlyVec3} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\n\n\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2));\n}\n/**\r\n * Alias for {@link vec3.subtract}\r\n * @function\r\n */\n\n\nvar sub = subtract;\n/**\r\n * Alias for {@link vec3.multiply}\r\n * @function\r\n */\n\nexports.sub = sub;\nvar mul = multiply;\n/**\r\n * Alias for {@link vec3.divide}\r\n * @function\r\n */\n\nexports.mul = mul;\nvar div = divide;\n/**\r\n * Alias for {@link vec3.distance}\r\n * @function\r\n */\n\nexports.div = div;\nvar dist = distance;\n/**\r\n * Alias for {@link vec3.squaredDistance}\r\n * @function\r\n */\n\nexports.dist = dist;\nvar sqrDist = squaredDistance;\n/**\r\n * Alias for {@link vec3.length}\r\n * @function\r\n */\n\nexports.sqrDist = sqrDist;\nvar len = length;\n/**\r\n * Alias for {@link vec3.squaredLength}\r\n * @function\r\n */\n\nexports.len = len;\nvar sqrLen = squaredLength;\n/**\r\n * Perform some operation over an array of vec3s.\r\n *\r\n * @param {Array} a the array of vectors to iterate over\r\n * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed\r\n * @param {Number} offset Number of elements to skip at the beginning of the array\r\n * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array\r\n * @param {Function} fn Function to call for each vector in the array\r\n * @param {Object} [arg] additional argument to pass to fn\r\n * @returns {Array} a\r\n * @function\r\n */\n\nexports.sqrLen = sqrLen;\n\nvar forEach = function () {\n var vec = create();\n return function (a, stride, offset, count, fn, arg) {\n var i, l;\n\n if (!stride) {\n stride = 3;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];\n vec[1] = a[i + 1];\n vec[2] = a[i + 2];\n fn(vec, vec, arg);\n a[i] = vec[0];\n a[i + 1] = vec[1];\n a[i + 2] = vec[2];\n }\n\n return a;\n };\n}();\n\nexports.forEach = forEach;", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.create = create;\nexports.clone = clone;\nexports.fromValues = fromValues;\nexports.copy = copy;\nexports.set = set;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiply = multiply;\nexports.divide = divide;\nexports.ceil = ceil;\nexports.floor = floor;\nexports.min = min;\nexports.max = max;\nexports.round = round;\nexports.scale = scale;\nexports.scaleAndAdd = scaleAndAdd;\nexports.distance = distance;\nexports.squaredDistance = squaredDistance;\nexports.length = length;\nexports.squaredLength = squaredLength;\nexports.negate = negate;\nexports.inverse = inverse;\nexports.normalize = normalize;\nexports.dot = dot;\nexports.cross = cross;\nexports.lerp = lerp;\nexports.random = random;\nexports.transformMat4 = transformMat4;\nexports.transformQuat = transformQuat;\nexports.zero = zero;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }\n\n/**\r\n * 4 Dimensional Vector\r\n * @module vec4\r\n */\n\n/**\r\n * Creates a new, empty vec4\r\n *\r\n * @returns {vec4} a new 4D vector\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n }\n\n return out;\n}\n/**\r\n * Creates a new vec4 initialized with values from an existing vector\r\n *\r\n * @param {ReadonlyVec4} a vector to clone\r\n * @returns {vec4} a new 4D vector\r\n */\n\n\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n/**\r\n * Creates a new vec4 initialized with the given values\r\n *\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @param {Number} w W component\r\n * @returns {vec4} a new 4D vector\r\n */\n\n\nfunction fromValues(x, y, z, w) {\n var out = new glMatrix.ARRAY_TYPE(4);\n out[0] = x;\n out[1] = y;\n out[2] = z;\n out[3] = w;\n return out;\n}\n/**\r\n * Copy the values from one vec4 to another\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the source vector\r\n * @returns {vec4} out\r\n */\n\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n return out;\n}\n/**\r\n * Set the components of a vec4 to the given values\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @param {Number} w W component\r\n * @returns {vec4} out\r\n */\n\n\nfunction set(out, x, y, z, w) {\n out[0] = x;\n out[1] = y;\n out[2] = z;\n out[3] = w;\n return out;\n}\n/**\r\n * Adds two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @returns {vec4} out\r\n */\n\n\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n return out;\n}\n/**\r\n * Subtracts vector b from vector a\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @returns {vec4} out\r\n */\n\n\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n return out;\n}\n/**\r\n * Multiplies two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @returns {vec4} out\r\n */\n\n\nfunction multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n out[2] = a[2] * b[2];\n out[3] = a[3] * b[3];\n return out;\n}\n/**\r\n * Divides two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @returns {vec4} out\r\n */\n\n\nfunction divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n out[2] = a[2] / b[2];\n out[3] = a[3] / b[3];\n return out;\n}\n/**\r\n * Math.ceil the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a vector to ceil\r\n * @returns {vec4} out\r\n */\n\n\nfunction ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n out[2] = Math.ceil(a[2]);\n out[3] = Math.ceil(a[3]);\n return out;\n}\n/**\r\n * Math.floor the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a vector to floor\r\n * @returns {vec4} out\r\n */\n\n\nfunction floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n out[2] = Math.floor(a[2]);\n out[3] = Math.floor(a[3]);\n return out;\n}\n/**\r\n * Returns the minimum of two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @returns {vec4} out\r\n */\n\n\nfunction min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n out[2] = Math.min(a[2], b[2]);\n out[3] = Math.min(a[3], b[3]);\n return out;\n}\n/**\r\n * Returns the maximum of two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @returns {vec4} out\r\n */\n\n\nfunction max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n out[2] = Math.max(a[2], b[2]);\n out[3] = Math.max(a[3], b[3]);\n return out;\n}\n/**\r\n * Math.round the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a vector to round\r\n * @returns {vec4} out\r\n */\n\n\nfunction round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n out[2] = Math.round(a[2]);\n out[3] = Math.round(a[3]);\n return out;\n}\n/**\r\n * Scales a vec4 by a scalar number\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the vector to scale\r\n * @param {Number} b amount to scale the vector by\r\n * @returns {vec4} out\r\n */\n\n\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n return out;\n}\n/**\r\n * Adds two vec4's after scaling the second operand by a scalar value\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @param {Number} scale the amount to scale b by before adding\r\n * @returns {vec4} out\r\n */\n\n\nfunction scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n return out;\n}\n/**\r\n * Calculates the euclidian distance between two vec4's\r\n *\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @returns {Number} distance between a and b\r\n */\n\n\nfunction distance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n var w = b[3] - a[3];\n return Math.hypot(x, y, z, w);\n}\n/**\r\n * Calculates the squared euclidian distance between two vec4's\r\n *\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @returns {Number} squared distance between a and b\r\n */\n\n\nfunction squaredDistance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n var w = b[3] - a[3];\n return x * x + y * y + z * z + w * w;\n}\n/**\r\n * Calculates the length of a vec4\r\n *\r\n * @param {ReadonlyVec4} a vector to calculate length of\r\n * @returns {Number} length of a\r\n */\n\n\nfunction length(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var w = a[3];\n return Math.hypot(x, y, z, w);\n}\n/**\r\n * Calculates the squared length of a vec4\r\n *\r\n * @param {ReadonlyVec4} a vector to calculate squared length of\r\n * @returns {Number} squared length of a\r\n */\n\n\nfunction squaredLength(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var w = a[3];\n return x * x + y * y + z * z + w * w;\n}\n/**\r\n * Negates the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a vector to negate\r\n * @returns {vec4} out\r\n */\n\n\nfunction negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = -a[3];\n return out;\n}\n/**\r\n * Returns the inverse of the components of a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a vector to invert\r\n * @returns {vec4} out\r\n */\n\n\nfunction inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n out[2] = 1.0 / a[2];\n out[3] = 1.0 / a[3];\n return out;\n}\n/**\r\n * Normalize a vec4\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a vector to normalize\r\n * @returns {vec4} out\r\n */\n\n\nfunction normalize(out, a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var w = a[3];\n var len = x * x + y * y + z * z + w * w;\n\n if (len > 0) {\n len = 1 / Math.sqrt(len);\n }\n\n out[0] = x * len;\n out[1] = y * len;\n out[2] = z * len;\n out[3] = w * len;\n return out;\n}\n/**\r\n * Calculates the dot product of two vec4's\r\n *\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @returns {Number} dot product of a and b\r\n */\n\n\nfunction dot(a, b) {\n return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];\n}\n/**\r\n * Returns the cross-product of three vectors in a 4-dimensional space\r\n *\r\n * @param {ReadonlyVec4} result the receiving vector\r\n * @param {ReadonlyVec4} U the first vector\r\n * @param {ReadonlyVec4} V the second vector\r\n * @param {ReadonlyVec4} W the third vector\r\n * @returns {vec4} result\r\n */\n\n\nfunction cross(out, u, v, w) {\n var A = v[0] * w[1] - v[1] * w[0],\n B = v[0] * w[2] - v[2] * w[0],\n C = v[0] * w[3] - v[3] * w[0],\n D = v[1] * w[2] - v[2] * w[1],\n E = v[1] * w[3] - v[3] * w[1],\n F = v[2] * w[3] - v[3] * w[2];\n var G = u[0];\n var H = u[1];\n var I = u[2];\n var J = u[3];\n out[0] = H * F - I * E + J * D;\n out[1] = -(G * F) + I * C - J * B;\n out[2] = G * E - H * C + J * A;\n out[3] = -(G * D) + H * B - I * A;\n return out;\n}\n/**\r\n * Performs a linear interpolation between two vec4's\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the first operand\r\n * @param {ReadonlyVec4} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec4} out\r\n */\n\n\nfunction lerp(out, a, b, t) {\n var ax = a[0];\n var ay = a[1];\n var az = a[2];\n var aw = a[3];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n out[2] = az + t * (b[2] - az);\n out[3] = aw + t * (b[3] - aw);\n return out;\n}\n/**\r\n * Generates a random vector with the given scale\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\r\n * @returns {vec4} out\r\n */\n\n\nfunction random(out, scale) {\n scale = scale || 1.0; // Marsaglia, George. Choosing a Point from the Surface of a\n // Sphere. Ann. Math. Statist. 43 (1972), no. 2, 645--646.\n // http://projecteuclid.org/euclid.aoms/1177692644;\n\n var v1, v2, v3, v4;\n var s1, s2;\n\n do {\n v1 = glMatrix.RANDOM() * 2 - 1;\n v2 = glMatrix.RANDOM() * 2 - 1;\n s1 = v1 * v1 + v2 * v2;\n } while (s1 >= 1);\n\n do {\n v3 = glMatrix.RANDOM() * 2 - 1;\n v4 = glMatrix.RANDOM() * 2 - 1;\n s2 = v3 * v3 + v4 * v4;\n } while (s2 >= 1);\n\n var d = Math.sqrt((1 - s1) / s2);\n out[0] = scale * v1;\n out[1] = scale * v2;\n out[2] = scale * v3 * d;\n out[3] = scale * v4 * d;\n return out;\n}\n/**\r\n * Transforms the vec4 with a mat4.\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the vector to transform\r\n * @param {ReadonlyMat4} m matrix to transform with\r\n * @returns {vec4} out\r\n */\n\n\nfunction transformMat4(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2],\n w = a[3];\n out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;\n out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;\n out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;\n out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;\n return out;\n}\n/**\r\n * Transforms the vec4 with a quat\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @param {ReadonlyVec4} a the vector to transform\r\n * @param {ReadonlyQuat} q quaternion to transform with\r\n * @returns {vec4} out\r\n */\n\n\nfunction transformQuat(out, a, q) {\n var x = a[0],\n y = a[1],\n z = a[2];\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3]; // calculate quat * vec\n\n var ix = qw * x + qy * z - qz * y;\n var iy = qw * y + qz * x - qx * z;\n var iz = qw * z + qx * y - qy * x;\n var iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat\n\n out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;\n out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;\n out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;\n out[3] = a[3];\n return out;\n}\n/**\r\n * Set the components of a vec4 to zero\r\n *\r\n * @param {vec4} out the receiving vector\r\n * @returns {vec4} out\r\n */\n\n\nfunction zero(out) {\n out[0] = 0.0;\n out[1] = 0.0;\n out[2] = 0.0;\n out[3] = 0.0;\n return out;\n}\n/**\r\n * Returns a string representation of a vector\r\n *\r\n * @param {ReadonlyVec4} a vector to represent as a string\r\n * @returns {String} string representation of the vector\r\n */\n\n\nfunction str(a) {\n return \"vec4(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \", \" + a[3] + \")\";\n}\n/**\r\n * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyVec4} a The first vector.\r\n * @param {ReadonlyVec4} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\n\n\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];\n}\n/**\r\n * Returns whether or not the vectors have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyVec4} a The first vector.\r\n * @param {ReadonlyVec4} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\n\n\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));\n}\n/**\r\n * Alias for {@link vec4.subtract}\r\n * @function\r\n */\n\n\nvar sub = subtract;\n/**\r\n * Alias for {@link vec4.multiply}\r\n * @function\r\n */\n\nexports.sub = sub;\nvar mul = multiply;\n/**\r\n * Alias for {@link vec4.divide}\r\n * @function\r\n */\n\nexports.mul = mul;\nvar div = divide;\n/**\r\n * Alias for {@link vec4.distance}\r\n * @function\r\n */\n\nexports.div = div;\nvar dist = distance;\n/**\r\n * Alias for {@link vec4.squaredDistance}\r\n * @function\r\n */\n\nexports.dist = dist;\nvar sqrDist = squaredDistance;\n/**\r\n * Alias for {@link vec4.length}\r\n * @function\r\n */\n\nexports.sqrDist = sqrDist;\nvar len = length;\n/**\r\n * Alias for {@link vec4.squaredLength}\r\n * @function\r\n */\n\nexports.len = len;\nvar sqrLen = squaredLength;\n/**\r\n * Perform some operation over an array of vec4s.\r\n *\r\n * @param {Array} a the array of vectors to iterate over\r\n * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed\r\n * @param {Number} offset Number of elements to skip at the beginning of the array\r\n * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array\r\n * @param {Function} fn Function to call for each vector in the array\r\n * @param {Object} [arg] additional argument to pass to fn\r\n * @returns {Array} a\r\n * @function\r\n */\n\nexports.sqrLen = sqrLen;\n\nvar forEach = function () {\n var vec = create();\n return function (a, stride, offset, count, fn, arg) {\n var i, l;\n\n if (!stride) {\n stride = 4;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];\n vec[1] = a[i + 1];\n vec[2] = a[i + 2];\n vec[3] = a[i + 3];\n fn(vec, vec, arg);\n a[i] = vec[0];\n a[i + 1] = vec[1];\n a[i + 2] = vec[2];\n a[i + 3] = vec[3];\n }\n\n return a;\n };\n}();\n\nexports.forEach = forEach;", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.create = create;\nexports.identity = identity;\nexports.setAxisAngle = setAxisAngle;\nexports.getAxisAngle = getAxisAngle;\nexports.getAngle = getAngle;\nexports.multiply = multiply;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.calculateW = calculateW;\nexports.exp = exp;\nexports.ln = ln;\nexports.pow = pow;\nexports.slerp = slerp;\nexports.random = random;\nexports.invert = invert;\nexports.conjugate = conjugate;\nexports.fromMat3 = fromMat3;\nexports.fromEuler = fromEuler;\nexports.str = str;\nexports.setAxes = exports.sqlerp = exports.rotationTo = exports.equals = exports.exactEquals = exports.normalize = exports.sqrLen = exports.squaredLength = exports.len = exports.length = exports.lerp = exports.dot = exports.scale = exports.mul = exports.add = exports.set = exports.copy = exports.fromValues = exports.clone = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nvar mat3 = _interopRequireWildcard(require(\"./mat3.js\"));\n\nvar vec3 = _interopRequireWildcard(require(\"./vec3.js\"));\n\nvar vec4 = _interopRequireWildcard(require(\"./vec4.js\"));\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }\n\n/**\r\n * Quaternion\r\n * @module quat\r\n */\n\n/**\r\n * Creates a new identity quat\r\n *\r\n * @returns {quat} a new quaternion\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(4);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n }\n\n out[3] = 1;\n return out;\n}\n/**\r\n * Set a quat to the identity quaternion\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @returns {quat} out\r\n */\n\n\nfunction identity(out) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n}\n/**\r\n * Sets a quat from the given angle and rotation axis,\r\n * then returns it.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyVec3} axis the axis around which to rotate\r\n * @param {Number} rad the angle in radians\r\n * @returns {quat} out\r\n **/\n\n\nfunction setAxisAngle(out, axis, rad) {\n rad = rad * 0.5;\n var s = Math.sin(rad);\n out[0] = s * axis[0];\n out[1] = s * axis[1];\n out[2] = s * axis[2];\n out[3] = Math.cos(rad);\n return out;\n}\n/**\r\n * Gets the rotation axis and angle for a given\r\n * quaternion. If a quaternion is created with\r\n * setAxisAngle, this method will return the same\r\n * values as providied in the original parameter list\r\n * OR functionally equivalent values.\r\n * Example: The quaternion formed by axis [0, 0, 1] and\r\n * angle -90 is the same as the quaternion formed by\r\n * [0, 0, 1] and 270. This method favors the latter.\r\n * @param {vec3} out_axis Vector receiving the axis of rotation\r\n * @param {ReadonlyQuat} q Quaternion to be decomposed\r\n * @return {Number} Angle, in radians, of the rotation\r\n */\n\n\nfunction getAxisAngle(out_axis, q) {\n var rad = Math.acos(q[3]) * 2.0;\n var s = Math.sin(rad / 2.0);\n\n if (s > glMatrix.EPSILON) {\n out_axis[0] = q[0] / s;\n out_axis[1] = q[1] / s;\n out_axis[2] = q[2] / s;\n } else {\n // If s is zero, return any axis (no rotation - axis does not matter)\n out_axis[0] = 1;\n out_axis[1] = 0;\n out_axis[2] = 0;\n }\n\n return rad;\n}\n/**\r\n * Gets the angular distance between two unit quaternions\r\n *\r\n * @param {ReadonlyQuat} a Origin unit quaternion\r\n * @param {ReadonlyQuat} b Destination unit quaternion\r\n * @return {Number} Angle, in radians, between the two quaternions\r\n */\n\n\nfunction getAngle(a, b) {\n var dotproduct = dot(a, b);\n return Math.acos(2 * dotproduct * dotproduct - 1);\n}\n/**\r\n * Multiplies two quat's\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a the first operand\r\n * @param {ReadonlyQuat} b the second operand\r\n * @returns {quat} out\r\n */\n\n\nfunction multiply(out, a, b) {\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bx = b[0],\n by = b[1],\n bz = b[2],\n bw = b[3];\n out[0] = ax * bw + aw * bx + ay * bz - az * by;\n out[1] = ay * bw + aw * by + az * bx - ax * bz;\n out[2] = az * bw + aw * bz + ax * by - ay * bx;\n out[3] = aw * bw - ax * bx - ay * by - az * bz;\n return out;\n}\n/**\r\n * Rotates a quaternion by the given angle about the X axis\r\n *\r\n * @param {quat} out quat receiving operation result\r\n * @param {ReadonlyQuat} a quat to rotate\r\n * @param {number} rad angle (in radians) to rotate\r\n * @returns {quat} out\r\n */\n\n\nfunction rotateX(out, a, rad) {\n rad *= 0.5;\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bx = Math.sin(rad),\n bw = Math.cos(rad);\n out[0] = ax * bw + aw * bx;\n out[1] = ay * bw + az * bx;\n out[2] = az * bw - ay * bx;\n out[3] = aw * bw - ax * bx;\n return out;\n}\n/**\r\n * Rotates a quaternion by the given angle about the Y axis\r\n *\r\n * @param {quat} out quat receiving operation result\r\n * @param {ReadonlyQuat} a quat to rotate\r\n * @param {number} rad angle (in radians) to rotate\r\n * @returns {quat} out\r\n */\n\n\nfunction rotateY(out, a, rad) {\n rad *= 0.5;\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var by = Math.sin(rad),\n bw = Math.cos(rad);\n out[0] = ax * bw - az * by;\n out[1] = ay * bw + aw * by;\n out[2] = az * bw + ax * by;\n out[3] = aw * bw - ay * by;\n return out;\n}\n/**\r\n * Rotates a quaternion by the given angle about the Z axis\r\n *\r\n * @param {quat} out quat receiving operation result\r\n * @param {ReadonlyQuat} a quat to rotate\r\n * @param {number} rad angle (in radians) to rotate\r\n * @returns {quat} out\r\n */\n\n\nfunction rotateZ(out, a, rad) {\n rad *= 0.5;\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bz = Math.sin(rad),\n bw = Math.cos(rad);\n out[0] = ax * bw + ay * bz;\n out[1] = ay * bw - ax * bz;\n out[2] = az * bw + aw * bz;\n out[3] = aw * bw - az * bz;\n return out;\n}\n/**\r\n * Calculates the W component of a quat from the X, Y, and Z components.\r\n * Assumes that quaternion is 1 unit in length.\r\n * Any existing W component will be ignored.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a quat to calculate W component of\r\n * @returns {quat} out\r\n */\n\n\nfunction calculateW(out, a) {\n var x = a[0],\n y = a[1],\n z = a[2];\n out[0] = x;\n out[1] = y;\n out[2] = z;\n out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));\n return out;\n}\n/**\r\n * Calculate the exponential of a unit quaternion.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a quat to calculate the exponential of\r\n * @returns {quat} out\r\n */\n\n\nfunction exp(out, a) {\n var x = a[0],\n y = a[1],\n z = a[2],\n w = a[3];\n var r = Math.sqrt(x * x + y * y + z * z);\n var et = Math.exp(w);\n var s = r > 0 ? et * Math.sin(r) / r : 0;\n out[0] = x * s;\n out[1] = y * s;\n out[2] = z * s;\n out[3] = et * Math.cos(r);\n return out;\n}\n/**\r\n * Calculate the natural logarithm of a unit quaternion.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a quat to calculate the exponential of\r\n * @returns {quat} out\r\n */\n\n\nfunction ln(out, a) {\n var x = a[0],\n y = a[1],\n z = a[2],\n w = a[3];\n var r = Math.sqrt(x * x + y * y + z * z);\n var t = r > 0 ? Math.atan2(r, w) / r : 0;\n out[0] = x * t;\n out[1] = y * t;\n out[2] = z * t;\n out[3] = 0.5 * Math.log(x * x + y * y + z * z + w * w);\n return out;\n}\n/**\r\n * Calculate the scalar power of a unit quaternion.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a quat to calculate the exponential of\r\n * @param {Number} b amount to scale the quaternion by\r\n * @returns {quat} out\r\n */\n\n\nfunction pow(out, a, b) {\n ln(out, a);\n scale(out, out, b);\n exp(out, out);\n return out;\n}\n/**\r\n * Performs a spherical linear interpolation between two quat\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a the first operand\r\n * @param {ReadonlyQuat} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {quat} out\r\n */\n\n\nfunction slerp(out, a, b, t) {\n // benchmarks:\n // http://jsperf.com/quaternion-slerp-implementations\n var ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n var bx = b[0],\n by = b[1],\n bz = b[2],\n bw = b[3];\n var omega, cosom, sinom, scale0, scale1; // calc cosine\n\n cosom = ax * bx + ay * by + az * bz + aw * bw; // adjust signs (if necessary)\n\n if (cosom < 0.0) {\n cosom = -cosom;\n bx = -bx;\n by = -by;\n bz = -bz;\n bw = -bw;\n } // calculate coefficients\n\n\n if (1.0 - cosom > glMatrix.EPSILON) {\n // standard case (slerp)\n omega = Math.acos(cosom);\n sinom = Math.sin(omega);\n scale0 = Math.sin((1.0 - t) * omega) / sinom;\n scale1 = Math.sin(t * omega) / sinom;\n } else {\n // \"from\" and \"to\" quaternions are very close\n // ... so we can do a linear interpolation\n scale0 = 1.0 - t;\n scale1 = t;\n } // calculate final values\n\n\n out[0] = scale0 * ax + scale1 * bx;\n out[1] = scale0 * ay + scale1 * by;\n out[2] = scale0 * az + scale1 * bz;\n out[3] = scale0 * aw + scale1 * bw;\n return out;\n}\n/**\r\n * Generates a random unit quaternion\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @returns {quat} out\r\n */\n\n\nfunction random(out) {\n // Implementation of http://planning.cs.uiuc.edu/node198.html\n // TODO: Calling random 3 times is probably not the fastest solution\n var u1 = glMatrix.RANDOM();\n var u2 = glMatrix.RANDOM();\n var u3 = glMatrix.RANDOM();\n var sqrt1MinusU1 = Math.sqrt(1 - u1);\n var sqrtU1 = Math.sqrt(u1);\n out[0] = sqrt1MinusU1 * Math.sin(2.0 * Math.PI * u2);\n out[1] = sqrt1MinusU1 * Math.cos(2.0 * Math.PI * u2);\n out[2] = sqrtU1 * Math.sin(2.0 * Math.PI * u3);\n out[3] = sqrtU1 * Math.cos(2.0 * Math.PI * u3);\n return out;\n}\n/**\r\n * Calculates the inverse of a quat\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a quat to calculate inverse of\r\n * @returns {quat} out\r\n */\n\n\nfunction invert(out, a) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3];\n var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;\n var invDot = dot ? 1.0 / dot : 0; // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0\n\n out[0] = -a0 * invDot;\n out[1] = -a1 * invDot;\n out[2] = -a2 * invDot;\n out[3] = a3 * invDot;\n return out;\n}\n/**\r\n * Calculates the conjugate of a quat\r\n * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a quat to calculate conjugate of\r\n * @returns {quat} out\r\n */\n\n\nfunction conjugate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a[3];\n return out;\n}\n/**\r\n * Creates a quaternion from the given 3x3 rotation matrix.\r\n *\r\n * NOTE: The resultant quaternion is not normalized, so you should be sure\r\n * to renormalize the quaternion yourself where necessary.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyMat3} m rotation matrix\r\n * @returns {quat} out\r\n * @function\r\n */\n\n\nfunction fromMat3(out, m) {\n // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes\n // article \"Quaternion Calculus and Fast Animation\".\n var fTrace = m[0] + m[4] + m[8];\n var fRoot;\n\n if (fTrace > 0.0) {\n // |w| > 1/2, may as well choose w > 1/2\n fRoot = Math.sqrt(fTrace + 1.0); // 2w\n\n out[3] = 0.5 * fRoot;\n fRoot = 0.5 / fRoot; // 1/(4w)\n\n out[0] = (m[5] - m[7]) * fRoot;\n out[1] = (m[6] - m[2]) * fRoot;\n out[2] = (m[1] - m[3]) * fRoot;\n } else {\n // |w| <= 1/2\n var i = 0;\n if (m[4] > m[0]) i = 1;\n if (m[8] > m[i * 3 + i]) i = 2;\n var j = (i + 1) % 3;\n var k = (i + 2) % 3;\n fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);\n out[i] = 0.5 * fRoot;\n fRoot = 0.5 / fRoot;\n out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;\n out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;\n out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;\n }\n\n return out;\n}\n/**\r\n * Creates a quaternion from the given euler angle x, y, z.\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {x} Angle to rotate around X axis in degrees.\r\n * @param {y} Angle to rotate around Y axis in degrees.\r\n * @param {z} Angle to rotate around Z axis in degrees.\r\n * @returns {quat} out\r\n * @function\r\n */\n\n\nfunction fromEuler(out, x, y, z) {\n var halfToRad = 0.5 * Math.PI / 180.0;\n x *= halfToRad;\n y *= halfToRad;\n z *= halfToRad;\n var sx = Math.sin(x);\n var cx = Math.cos(x);\n var sy = Math.sin(y);\n var cy = Math.cos(y);\n var sz = Math.sin(z);\n var cz = Math.cos(z);\n out[0] = sx * cy * cz - cx * sy * sz;\n out[1] = cx * sy * cz + sx * cy * sz;\n out[2] = cx * cy * sz - sx * sy * cz;\n out[3] = cx * cy * cz + sx * sy * sz;\n return out;\n}\n/**\r\n * Returns a string representation of a quatenion\r\n *\r\n * @param {ReadonlyQuat} a vector to represent as a string\r\n * @returns {String} string representation of the vector\r\n */\n\n\nfunction str(a) {\n return \"quat(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \", \" + a[3] + \")\";\n}\n/**\r\n * Creates a new quat initialized with values from an existing quaternion\r\n *\r\n * @param {ReadonlyQuat} a quaternion to clone\r\n * @returns {quat} a new quaternion\r\n * @function\r\n */\n\n\nvar clone = vec4.clone;\n/**\r\n * Creates a new quat initialized with the given values\r\n *\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @param {Number} w W component\r\n * @returns {quat} a new quaternion\r\n * @function\r\n */\n\nexports.clone = clone;\nvar fromValues = vec4.fromValues;\n/**\r\n * Copy the values from one quat to another\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a the source quaternion\r\n * @returns {quat} out\r\n * @function\r\n */\n\nexports.fromValues = fromValues;\nvar copy = vec4.copy;\n/**\r\n * Set the components of a quat to the given values\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @param {Number} z Z component\r\n * @param {Number} w W component\r\n * @returns {quat} out\r\n * @function\r\n */\n\nexports.copy = copy;\nvar set = vec4.set;\n/**\r\n * Adds two quat's\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a the first operand\r\n * @param {ReadonlyQuat} b the second operand\r\n * @returns {quat} out\r\n * @function\r\n */\n\nexports.set = set;\nvar add = vec4.add;\n/**\r\n * Alias for {@link quat.multiply}\r\n * @function\r\n */\n\nexports.add = add;\nvar mul = multiply;\n/**\r\n * Scales a quat by a scalar number\r\n *\r\n * @param {quat} out the receiving vector\r\n * @param {ReadonlyQuat} a the vector to scale\r\n * @param {Number} b amount to scale the vector by\r\n * @returns {quat} out\r\n * @function\r\n */\n\nexports.mul = mul;\nvar scale = vec4.scale;\n/**\r\n * Calculates the dot product of two quat's\r\n *\r\n * @param {ReadonlyQuat} a the first operand\r\n * @param {ReadonlyQuat} b the second operand\r\n * @returns {Number} dot product of a and b\r\n * @function\r\n */\n\nexports.scale = scale;\nvar dot = vec4.dot;\n/**\r\n * Performs a linear interpolation between two quat's\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a the first operand\r\n * @param {ReadonlyQuat} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {quat} out\r\n * @function\r\n */\n\nexports.dot = dot;\nvar lerp = vec4.lerp;\n/**\r\n * Calculates the length of a quat\r\n *\r\n * @param {ReadonlyQuat} a vector to calculate length of\r\n * @returns {Number} length of a\r\n */\n\nexports.lerp = lerp;\nvar length = vec4.length;\n/**\r\n * Alias for {@link quat.length}\r\n * @function\r\n */\n\nexports.length = length;\nvar len = length;\n/**\r\n * Calculates the squared length of a quat\r\n *\r\n * @param {ReadonlyQuat} a vector to calculate squared length of\r\n * @returns {Number} squared length of a\r\n * @function\r\n */\n\nexports.len = len;\nvar squaredLength = vec4.squaredLength;\n/**\r\n * Alias for {@link quat.squaredLength}\r\n * @function\r\n */\n\nexports.squaredLength = squaredLength;\nvar sqrLen = squaredLength;\n/**\r\n * Normalize a quat\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a quaternion to normalize\r\n * @returns {quat} out\r\n * @function\r\n */\n\nexports.sqrLen = sqrLen;\nvar normalize = vec4.normalize;\n/**\r\n * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyQuat} a The first quaternion.\r\n * @param {ReadonlyQuat} b The second quaternion.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\n\nexports.normalize = normalize;\nvar exactEquals = vec4.exactEquals;\n/**\r\n * Returns whether or not the quaternions have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyQuat} a The first vector.\r\n * @param {ReadonlyQuat} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\n\nexports.exactEquals = exactEquals;\nvar equals = vec4.equals;\n/**\r\n * Sets a quaternion to represent the shortest rotation from one\r\n * vector to another.\r\n *\r\n * Both vectors are assumed to be unit length.\r\n *\r\n * @param {quat} out the receiving quaternion.\r\n * @param {ReadonlyVec3} a the initial vector\r\n * @param {ReadonlyVec3} b the destination vector\r\n * @returns {quat} out\r\n */\n\nexports.equals = equals;\n\nvar rotationTo = function () {\n var tmpvec3 = vec3.create();\n var xUnitVec3 = vec3.fromValues(1, 0, 0);\n var yUnitVec3 = vec3.fromValues(0, 1, 0);\n return function (out, a, b) {\n var dot = vec3.dot(a, b);\n\n if (dot < -0.999999) {\n vec3.cross(tmpvec3, xUnitVec3, a);\n if (vec3.len(tmpvec3) < 0.000001) vec3.cross(tmpvec3, yUnitVec3, a);\n vec3.normalize(tmpvec3, tmpvec3);\n setAxisAngle(out, tmpvec3, Math.PI);\n return out;\n } else if (dot > 0.999999) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n return out;\n } else {\n vec3.cross(tmpvec3, a, b);\n out[0] = tmpvec3[0];\n out[1] = tmpvec3[1];\n out[2] = tmpvec3[2];\n out[3] = 1 + dot;\n return normalize(out, out);\n }\n };\n}();\n/**\r\n * Performs a spherical linear interpolation with two control points\r\n *\r\n * @param {quat} out the receiving quaternion\r\n * @param {ReadonlyQuat} a the first operand\r\n * @param {ReadonlyQuat} b the second operand\r\n * @param {ReadonlyQuat} c the third operand\r\n * @param {ReadonlyQuat} d the fourth operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {quat} out\r\n */\n\n\nexports.rotationTo = rotationTo;\n\nvar sqlerp = function () {\n var temp1 = create();\n var temp2 = create();\n return function (out, a, b, c, d, t) {\n slerp(temp1, a, d, t);\n slerp(temp2, b, c, t);\n slerp(out, temp1, temp2, 2 * t * (1 - t));\n return out;\n };\n}();\n/**\r\n * Sets the specified quaternion with values corresponding to the given\r\n * axes. Each axis is a vec3 and is expected to be unit length and\r\n * perpendicular to all other specified axes.\r\n *\r\n * @param {ReadonlyVec3} view the vector representing the viewing direction\r\n * @param {ReadonlyVec3} right the vector representing the local \"right\" direction\r\n * @param {ReadonlyVec3} up the vector representing the local \"up\" direction\r\n * @returns {quat} out\r\n */\n\n\nexports.sqlerp = sqlerp;\n\nvar setAxes = function () {\n var matr = mat3.create();\n return function (out, view, right, up) {\n matr[0] = right[0];\n matr[3] = right[1];\n matr[6] = right[2];\n matr[1] = up[0];\n matr[4] = up[1];\n matr[7] = up[2];\n matr[2] = -view[0];\n matr[5] = -view[1];\n matr[8] = -view[2];\n return normalize(out, fromMat3(out, matr));\n };\n}();\n\nexports.setAxes = setAxes;", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.create = create;\nexports.clone = clone;\nexports.fromValues = fromValues;\nexports.fromRotationTranslationValues = fromRotationTranslationValues;\nexports.fromRotationTranslation = fromRotationTranslation;\nexports.fromTranslation = fromTranslation;\nexports.fromRotation = fromRotation;\nexports.fromMat4 = fromMat4;\nexports.copy = copy;\nexports.identity = identity;\nexports.set = set;\nexports.getDual = getDual;\nexports.setDual = setDual;\nexports.getTranslation = getTranslation;\nexports.translate = translate;\nexports.rotateX = rotateX;\nexports.rotateY = rotateY;\nexports.rotateZ = rotateZ;\nexports.rotateByQuatAppend = rotateByQuatAppend;\nexports.rotateByQuatPrepend = rotateByQuatPrepend;\nexports.rotateAroundAxis = rotateAroundAxis;\nexports.add = add;\nexports.multiply = multiply;\nexports.scale = scale;\nexports.lerp = lerp;\nexports.invert = invert;\nexports.conjugate = conjugate;\nexports.normalize = normalize;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.sqrLen = exports.squaredLength = exports.len = exports.length = exports.dot = exports.mul = exports.setReal = exports.getReal = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nvar quat = _interopRequireWildcard(require(\"./quat.js\"));\n\nvar mat4 = _interopRequireWildcard(require(\"./mat4.js\"));\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }\n\n/**\r\n * Dual Quaternion
\r\n * Format: [real, dual]
\r\n * Quaternion format: XYZW
\r\n * Make sure to have normalized dual quaternions, otherwise the functions may not work as intended.
\r\n * @module quat2\r\n */\n\n/**\r\n * Creates a new identity dual quat\r\n *\r\n * @returns {quat2} a new dual quaternion [real -> rotation, dual -> translation]\r\n */\nfunction create() {\n var dq = new glMatrix.ARRAY_TYPE(8);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n dq[0] = 0;\n dq[1] = 0;\n dq[2] = 0;\n dq[4] = 0;\n dq[5] = 0;\n dq[6] = 0;\n dq[7] = 0;\n }\n\n dq[3] = 1;\n return dq;\n}\n/**\r\n * Creates a new quat initialized with values from an existing quaternion\r\n *\r\n * @param {ReadonlyQuat2} a dual quaternion to clone\r\n * @returns {quat2} new dual quaternion\r\n * @function\r\n */\n\n\nfunction clone(a) {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = a[0];\n dq[1] = a[1];\n dq[2] = a[2];\n dq[3] = a[3];\n dq[4] = a[4];\n dq[5] = a[5];\n dq[6] = a[6];\n dq[7] = a[7];\n return dq;\n}\n/**\r\n * Creates a new dual quat initialized with the given values\r\n *\r\n * @param {Number} x1 X component\r\n * @param {Number} y1 Y component\r\n * @param {Number} z1 Z component\r\n * @param {Number} w1 W component\r\n * @param {Number} x2 X component\r\n * @param {Number} y2 Y component\r\n * @param {Number} z2 Z component\r\n * @param {Number} w2 W component\r\n * @returns {quat2} new dual quaternion\r\n * @function\r\n */\n\n\nfunction fromValues(x1, y1, z1, w1, x2, y2, z2, w2) {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = x1;\n dq[1] = y1;\n dq[2] = z1;\n dq[3] = w1;\n dq[4] = x2;\n dq[5] = y2;\n dq[6] = z2;\n dq[7] = w2;\n return dq;\n}\n/**\r\n * Creates a new dual quat from the given values (quat and translation)\r\n *\r\n * @param {Number} x1 X component\r\n * @param {Number} y1 Y component\r\n * @param {Number} z1 Z component\r\n * @param {Number} w1 W component\r\n * @param {Number} x2 X component (translation)\r\n * @param {Number} y2 Y component (translation)\r\n * @param {Number} z2 Z component (translation)\r\n * @returns {quat2} new dual quaternion\r\n * @function\r\n */\n\n\nfunction fromRotationTranslationValues(x1, y1, z1, w1, x2, y2, z2) {\n var dq = new glMatrix.ARRAY_TYPE(8);\n dq[0] = x1;\n dq[1] = y1;\n dq[2] = z1;\n dq[3] = w1;\n var ax = x2 * 0.5,\n ay = y2 * 0.5,\n az = z2 * 0.5;\n dq[4] = ax * w1 + ay * z1 - az * y1;\n dq[5] = ay * w1 + az * x1 - ax * z1;\n dq[6] = az * w1 + ax * y1 - ay * x1;\n dq[7] = -ax * x1 - ay * y1 - az * z1;\n return dq;\n}\n/**\r\n * Creates a dual quat from a quaternion and a translation\r\n *\r\n * @param {ReadonlyQuat2} dual quaternion receiving operation result\r\n * @param {ReadonlyQuat} q a normalized quaternion\r\n * @param {ReadonlyVec3} t tranlation vector\r\n * @returns {quat2} dual quaternion receiving operation result\r\n * @function\r\n */\n\n\nfunction fromRotationTranslation(out, q, t) {\n var ax = t[0] * 0.5,\n ay = t[1] * 0.5,\n az = t[2] * 0.5,\n bx = q[0],\n by = q[1],\n bz = q[2],\n bw = q[3];\n out[0] = bx;\n out[1] = by;\n out[2] = bz;\n out[3] = bw;\n out[4] = ax * bw + ay * bz - az * by;\n out[5] = ay * bw + az * bx - ax * bz;\n out[6] = az * bw + ax * by - ay * bx;\n out[7] = -ax * bx - ay * by - az * bz;\n return out;\n}\n/**\r\n * Creates a dual quat from a translation\r\n *\r\n * @param {ReadonlyQuat2} dual quaternion receiving operation result\r\n * @param {ReadonlyVec3} t translation vector\r\n * @returns {quat2} dual quaternion receiving operation result\r\n * @function\r\n */\n\n\nfunction fromTranslation(out, t) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = t[0] * 0.5;\n out[5] = t[1] * 0.5;\n out[6] = t[2] * 0.5;\n out[7] = 0;\n return out;\n}\n/**\r\n * Creates a dual quat from a quaternion\r\n *\r\n * @param {ReadonlyQuat2} dual quaternion receiving operation result\r\n * @param {ReadonlyQuat} q the quaternion\r\n * @returns {quat2} dual quaternion receiving operation result\r\n * @function\r\n */\n\n\nfunction fromRotation(out, q) {\n out[0] = q[0];\n out[1] = q[1];\n out[2] = q[2];\n out[3] = q[3];\n out[4] = 0;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n return out;\n}\n/**\r\n * Creates a new dual quat from a matrix (4x4)\r\n *\r\n * @param {quat2} out the dual quaternion\r\n * @param {ReadonlyMat4} a the matrix\r\n * @returns {quat2} dual quat receiving operation result\r\n * @function\r\n */\n\n\nfunction fromMat4(out, a) {\n //TODO Optimize this\n var outer = quat.create();\n mat4.getRotation(outer, a);\n var t = new glMatrix.ARRAY_TYPE(3);\n mat4.getTranslation(t, a);\n fromRotationTranslation(out, outer, t);\n return out;\n}\n/**\r\n * Copy the values from one dual quat to another\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a the source dual quaternion\r\n * @returns {quat2} out\r\n * @function\r\n */\n\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n return out;\n}\n/**\r\n * Set a dual quat to the identity dual quaternion\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @returns {quat2} out\r\n */\n\n\nfunction identity(out) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n out[3] = 1;\n out[4] = 0;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n return out;\n}\n/**\r\n * Set the components of a dual quat to the given values\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @param {Number} x1 X component\r\n * @param {Number} y1 Y component\r\n * @param {Number} z1 Z component\r\n * @param {Number} w1 W component\r\n * @param {Number} x2 X component\r\n * @param {Number} y2 Y component\r\n * @param {Number} z2 Z component\r\n * @param {Number} w2 W component\r\n * @returns {quat2} out\r\n * @function\r\n */\n\n\nfunction set(out, x1, y1, z1, w1, x2, y2, z2, w2) {\n out[0] = x1;\n out[1] = y1;\n out[2] = z1;\n out[3] = w1;\n out[4] = x2;\n out[5] = y2;\n out[6] = z2;\n out[7] = w2;\n return out;\n}\n/**\r\n * Gets the real part of a dual quat\r\n * @param {quat} out real part\r\n * @param {ReadonlyQuat2} a Dual Quaternion\r\n * @return {quat} real part\r\n */\n\n\nvar getReal = quat.copy;\n/**\r\n * Gets the dual part of a dual quat\r\n * @param {quat} out dual part\r\n * @param {ReadonlyQuat2} a Dual Quaternion\r\n * @return {quat} dual part\r\n */\n\nexports.getReal = getReal;\n\nfunction getDual(out, a) {\n out[0] = a[4];\n out[1] = a[5];\n out[2] = a[6];\n out[3] = a[7];\n return out;\n}\n/**\r\n * Set the real component of a dual quat to the given quaternion\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @param {ReadonlyQuat} q a quaternion representing the real part\r\n * @returns {quat2} out\r\n * @function\r\n */\n\n\nvar setReal = quat.copy;\n/**\r\n * Set the dual component of a dual quat to the given quaternion\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @param {ReadonlyQuat} q a quaternion representing the dual part\r\n * @returns {quat2} out\r\n * @function\r\n */\n\nexports.setReal = setReal;\n\nfunction setDual(out, q) {\n out[4] = q[0];\n out[5] = q[1];\n out[6] = q[2];\n out[7] = q[3];\n return out;\n}\n/**\r\n * Gets the translation of a normalized dual quat\r\n * @param {vec3} out translation\r\n * @param {ReadonlyQuat2} a Dual Quaternion to be decomposed\r\n * @return {vec3} translation\r\n */\n\n\nfunction getTranslation(out, a) {\n var ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3];\n out[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;\n out[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;\n out[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;\n return out;\n}\n/**\r\n * Translates a dual quat by the given vector\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a the dual quaternion to translate\r\n * @param {ReadonlyVec3} v vector to translate by\r\n * @returns {quat2} out\r\n */\n\n\nfunction translate(out, a, v) {\n var ax1 = a[0],\n ay1 = a[1],\n az1 = a[2],\n aw1 = a[3],\n bx1 = v[0] * 0.5,\n by1 = v[1] * 0.5,\n bz1 = v[2] * 0.5,\n ax2 = a[4],\n ay2 = a[5],\n az2 = a[6],\n aw2 = a[7];\n out[0] = ax1;\n out[1] = ay1;\n out[2] = az1;\n out[3] = aw1;\n out[4] = aw1 * bx1 + ay1 * bz1 - az1 * by1 + ax2;\n out[5] = aw1 * by1 + az1 * bx1 - ax1 * bz1 + ay2;\n out[6] = aw1 * bz1 + ax1 * by1 - ay1 * bx1 + az2;\n out[7] = -ax1 * bx1 - ay1 * by1 - az1 * bz1 + aw2;\n return out;\n}\n/**\r\n * Rotates a dual quat around the X axis\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a the dual quaternion to rotate\r\n * @param {number} rad how far should the rotation be\r\n * @returns {quat2} out\r\n */\n\n\nfunction rotateX(out, a, rad) {\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n ax1 = ax * bw + aw * bx + ay * bz - az * by,\n ay1 = ay * bw + aw * by + az * bx - ax * bz,\n az1 = az * bw + aw * bz + ax * by - ay * bx,\n aw1 = aw * bw - ax * bx - ay * by - az * bz;\n quat.rotateX(out, a, rad);\n bx = out[0];\n by = out[1];\n bz = out[2];\n bw = out[3];\n out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n return out;\n}\n/**\r\n * Rotates a dual quat around the Y axis\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a the dual quaternion to rotate\r\n * @param {number} rad how far should the rotation be\r\n * @returns {quat2} out\r\n */\n\n\nfunction rotateY(out, a, rad) {\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n ax1 = ax * bw + aw * bx + ay * bz - az * by,\n ay1 = ay * bw + aw * by + az * bx - ax * bz,\n az1 = az * bw + aw * bz + ax * by - ay * bx,\n aw1 = aw * bw - ax * bx - ay * by - az * bz;\n quat.rotateY(out, a, rad);\n bx = out[0];\n by = out[1];\n bz = out[2];\n bw = out[3];\n out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n return out;\n}\n/**\r\n * Rotates a dual quat around the Z axis\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a the dual quaternion to rotate\r\n * @param {number} rad how far should the rotation be\r\n * @returns {quat2} out\r\n */\n\n\nfunction rotateZ(out, a, rad) {\n var bx = -a[0],\n by = -a[1],\n bz = -a[2],\n bw = a[3],\n ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7],\n ax1 = ax * bw + aw * bx + ay * bz - az * by,\n ay1 = ay * bw + aw * by + az * bx - ax * bz,\n az1 = az * bw + aw * bz + ax * by - ay * bx,\n aw1 = aw * bw - ax * bx - ay * by - az * bz;\n quat.rotateZ(out, a, rad);\n bx = out[0];\n by = out[1];\n bz = out[2];\n bw = out[3];\n out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n return out;\n}\n/**\r\n * Rotates a dual quat by a given quaternion (a * q)\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a the dual quaternion to rotate\r\n * @param {ReadonlyQuat} q quaternion to rotate by\r\n * @returns {quat2} out\r\n */\n\n\nfunction rotateByQuatAppend(out, a, q) {\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3],\n ax = a[0],\n ay = a[1],\n az = a[2],\n aw = a[3];\n out[0] = ax * qw + aw * qx + ay * qz - az * qy;\n out[1] = ay * qw + aw * qy + az * qx - ax * qz;\n out[2] = az * qw + aw * qz + ax * qy - ay * qx;\n out[3] = aw * qw - ax * qx - ay * qy - az * qz;\n ax = a[4];\n ay = a[5];\n az = a[6];\n aw = a[7];\n out[4] = ax * qw + aw * qx + ay * qz - az * qy;\n out[5] = ay * qw + aw * qy + az * qx - ax * qz;\n out[6] = az * qw + aw * qz + ax * qy - ay * qx;\n out[7] = aw * qw - ax * qx - ay * qy - az * qz;\n return out;\n}\n/**\r\n * Rotates a dual quat by a given quaternion (q * a)\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat} q quaternion to rotate by\r\n * @param {ReadonlyQuat2} a the dual quaternion to rotate\r\n * @returns {quat2} out\r\n */\n\n\nfunction rotateByQuatPrepend(out, q, a) {\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3],\n bx = a[0],\n by = a[1],\n bz = a[2],\n bw = a[3];\n out[0] = qx * bw + qw * bx + qy * bz - qz * by;\n out[1] = qy * bw + qw * by + qz * bx - qx * bz;\n out[2] = qz * bw + qw * bz + qx * by - qy * bx;\n out[3] = qw * bw - qx * bx - qy * by - qz * bz;\n bx = a[4];\n by = a[5];\n bz = a[6];\n bw = a[7];\n out[4] = qx * bw + qw * bx + qy * bz - qz * by;\n out[5] = qy * bw + qw * by + qz * bx - qx * bz;\n out[6] = qz * bw + qw * bz + qx * by - qy * bx;\n out[7] = qw * bw - qx * bx - qy * by - qz * bz;\n return out;\n}\n/**\r\n * Rotates a dual quat around a given axis. Does the normalisation automatically\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a the dual quaternion to rotate\r\n * @param {ReadonlyVec3} axis the axis to rotate around\r\n * @param {Number} rad how far the rotation should be\r\n * @returns {quat2} out\r\n */\n\n\nfunction rotateAroundAxis(out, a, axis, rad) {\n //Special case for rad = 0\n if (Math.abs(rad) < glMatrix.EPSILON) {\n return copy(out, a);\n }\n\n var axisLength = Math.hypot(axis[0], axis[1], axis[2]);\n rad = rad * 0.5;\n var s = Math.sin(rad);\n var bx = s * axis[0] / axisLength;\n var by = s * axis[1] / axisLength;\n var bz = s * axis[2] / axisLength;\n var bw = Math.cos(rad);\n var ax1 = a[0],\n ay1 = a[1],\n az1 = a[2],\n aw1 = a[3];\n out[0] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;\n out[1] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;\n out[2] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;\n out[3] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;\n var ax = a[4],\n ay = a[5],\n az = a[6],\n aw = a[7];\n out[4] = ax * bw + aw * bx + ay * bz - az * by;\n out[5] = ay * bw + aw * by + az * bx - ax * bz;\n out[6] = az * bw + aw * bz + ax * by - ay * bx;\n out[7] = aw * bw - ax * bx - ay * by - az * bz;\n return out;\n}\n/**\r\n * Adds two dual quat's\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a the first operand\r\n * @param {ReadonlyQuat2} b the second operand\r\n * @returns {quat2} out\r\n * @function\r\n */\n\n\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n return out;\n}\n/**\r\n * Multiplies two dual quat's\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a the first operand\r\n * @param {ReadonlyQuat2} b the second operand\r\n * @returns {quat2} out\r\n */\n\n\nfunction multiply(out, a, b) {\n var ax0 = a[0],\n ay0 = a[1],\n az0 = a[2],\n aw0 = a[3],\n bx1 = b[4],\n by1 = b[5],\n bz1 = b[6],\n bw1 = b[7],\n ax1 = a[4],\n ay1 = a[5],\n az1 = a[6],\n aw1 = a[7],\n bx0 = b[0],\n by0 = b[1],\n bz0 = b[2],\n bw0 = b[3];\n out[0] = ax0 * bw0 + aw0 * bx0 + ay0 * bz0 - az0 * by0;\n out[1] = ay0 * bw0 + aw0 * by0 + az0 * bx0 - ax0 * bz0;\n out[2] = az0 * bw0 + aw0 * bz0 + ax0 * by0 - ay0 * bx0;\n out[3] = aw0 * bw0 - ax0 * bx0 - ay0 * by0 - az0 * bz0;\n out[4] = ax0 * bw1 + aw0 * bx1 + ay0 * bz1 - az0 * by1 + ax1 * bw0 + aw1 * bx0 + ay1 * bz0 - az1 * by0;\n out[5] = ay0 * bw1 + aw0 * by1 + az0 * bx1 - ax0 * bz1 + ay1 * bw0 + aw1 * by0 + az1 * bx0 - ax1 * bz0;\n out[6] = az0 * bw1 + aw0 * bz1 + ax0 * by1 - ay0 * bx1 + az1 * bw0 + aw1 * bz0 + ax1 * by0 - ay1 * bx0;\n out[7] = aw0 * bw1 - ax0 * bx1 - ay0 * by1 - az0 * bz1 + aw1 * bw0 - ax1 * bx0 - ay1 * by0 - az1 * bz0;\n return out;\n}\n/**\r\n * Alias for {@link quat2.multiply}\r\n * @function\r\n */\n\n\nvar mul = multiply;\n/**\r\n * Scales a dual quat by a scalar number\r\n *\r\n * @param {quat2} out the receiving dual quat\r\n * @param {ReadonlyQuat2} a the dual quat to scale\r\n * @param {Number} b amount to scale the dual quat by\r\n * @returns {quat2} out\r\n * @function\r\n */\n\nexports.mul = mul;\n\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n return out;\n}\n/**\r\n * Calculates the dot product of two dual quat's (The dot product of the real parts)\r\n *\r\n * @param {ReadonlyQuat2} a the first operand\r\n * @param {ReadonlyQuat2} b the second operand\r\n * @returns {Number} dot product of a and b\r\n * @function\r\n */\n\n\nvar dot = quat.dot;\n/**\r\n * Performs a linear interpolation between two dual quats's\r\n * NOTE: The resulting dual quaternions won't always be normalized (The error is most noticeable when t = 0.5)\r\n *\r\n * @param {quat2} out the receiving dual quat\r\n * @param {ReadonlyQuat2} a the first operand\r\n * @param {ReadonlyQuat2} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {quat2} out\r\n */\n\nexports.dot = dot;\n\nfunction lerp(out, a, b, t) {\n var mt = 1 - t;\n if (dot(a, b) < 0) t = -t;\n out[0] = a[0] * mt + b[0] * t;\n out[1] = a[1] * mt + b[1] * t;\n out[2] = a[2] * mt + b[2] * t;\n out[3] = a[3] * mt + b[3] * t;\n out[4] = a[4] * mt + b[4] * t;\n out[5] = a[5] * mt + b[5] * t;\n out[6] = a[6] * mt + b[6] * t;\n out[7] = a[7] * mt + b[7] * t;\n return out;\n}\n/**\r\n * Calculates the inverse of a dual quat. If they are normalized, conjugate is cheaper\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a dual quat to calculate inverse of\r\n * @returns {quat2} out\r\n */\n\n\nfunction invert(out, a) {\n var sqlen = squaredLength(a);\n out[0] = -a[0] / sqlen;\n out[1] = -a[1] / sqlen;\n out[2] = -a[2] / sqlen;\n out[3] = a[3] / sqlen;\n out[4] = -a[4] / sqlen;\n out[5] = -a[5] / sqlen;\n out[6] = -a[6] / sqlen;\n out[7] = a[7] / sqlen;\n return out;\n}\n/**\r\n * Calculates the conjugate of a dual quat\r\n * If the dual quaternion is normalized, this function is faster than quat2.inverse and produces the same result.\r\n *\r\n * @param {quat2} out the receiving quaternion\r\n * @param {ReadonlyQuat2} a quat to calculate conjugate of\r\n * @returns {quat2} out\r\n */\n\n\nfunction conjugate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n out[3] = a[3];\n out[4] = -a[4];\n out[5] = -a[5];\n out[6] = -a[6];\n out[7] = a[7];\n return out;\n}\n/**\r\n * Calculates the length of a dual quat\r\n *\r\n * @param {ReadonlyQuat2} a dual quat to calculate length of\r\n * @returns {Number} length of a\r\n * @function\r\n */\n\n\nvar length = quat.length;\n/**\r\n * Alias for {@link quat2.length}\r\n * @function\r\n */\n\nexports.length = length;\nvar len = length;\n/**\r\n * Calculates the squared length of a dual quat\r\n *\r\n * @param {ReadonlyQuat2} a dual quat to calculate squared length of\r\n * @returns {Number} squared length of a\r\n * @function\r\n */\n\nexports.len = len;\nvar squaredLength = quat.squaredLength;\n/**\r\n * Alias for {@link quat2.squaredLength}\r\n * @function\r\n */\n\nexports.squaredLength = squaredLength;\nvar sqrLen = squaredLength;\n/**\r\n * Normalize a dual quat\r\n *\r\n * @param {quat2} out the receiving dual quaternion\r\n * @param {ReadonlyQuat2} a dual quaternion to normalize\r\n * @returns {quat2} out\r\n * @function\r\n */\n\nexports.sqrLen = sqrLen;\n\nfunction normalize(out, a) {\n var magnitude = squaredLength(a);\n\n if (magnitude > 0) {\n magnitude = Math.sqrt(magnitude);\n var a0 = a[0] / magnitude;\n var a1 = a[1] / magnitude;\n var a2 = a[2] / magnitude;\n var a3 = a[3] / magnitude;\n var b0 = a[4];\n var b1 = a[5];\n var b2 = a[6];\n var b3 = a[7];\n var a_dot_b = a0 * b0 + a1 * b1 + a2 * b2 + a3 * b3;\n out[0] = a0;\n out[1] = a1;\n out[2] = a2;\n out[3] = a3;\n out[4] = (b0 - a0 * a_dot_b) / magnitude;\n out[5] = (b1 - a1 * a_dot_b) / magnitude;\n out[6] = (b2 - a2 * a_dot_b) / magnitude;\n out[7] = (b3 - a3 * a_dot_b) / magnitude;\n }\n\n return out;\n}\n/**\r\n * Returns a string representation of a dual quatenion\r\n *\r\n * @param {ReadonlyQuat2} a dual quaternion to represent as a string\r\n * @returns {String} string representation of the dual quat\r\n */\n\n\nfunction str(a) {\n return \"quat2(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \", \" + a[3] + \", \" + a[4] + \", \" + a[5] + \", \" + a[6] + \", \" + a[7] + \")\";\n}\n/**\r\n * Returns whether or not the dual quaternions have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyQuat2} a the first dual quaternion.\r\n * @param {ReadonlyQuat2} b the second dual quaternion.\r\n * @returns {Boolean} true if the dual quaternions are equal, false otherwise.\r\n */\n\n\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7];\n}\n/**\r\n * Returns whether or not the dual quaternions have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyQuat2} a the first dual quat.\r\n * @param {ReadonlyQuat2} b the second dual quat.\r\n * @returns {Boolean} true if the dual quats are equal, false otherwise.\r\n */\n\n\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7));\n}", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.create = create;\nexports.clone = clone;\nexports.fromValues = fromValues;\nexports.copy = copy;\nexports.set = set;\nexports.add = add;\nexports.subtract = subtract;\nexports.multiply = multiply;\nexports.divide = divide;\nexports.ceil = ceil;\nexports.floor = floor;\nexports.min = min;\nexports.max = max;\nexports.round = round;\nexports.scale = scale;\nexports.scaleAndAdd = scaleAndAdd;\nexports.distance = distance;\nexports.squaredDistance = squaredDistance;\nexports.length = length;\nexports.squaredLength = squaredLength;\nexports.negate = negate;\nexports.inverse = inverse;\nexports.normalize = normalize;\nexports.dot = dot;\nexports.cross = cross;\nexports.lerp = lerp;\nexports.random = random;\nexports.transformMat2 = transformMat2;\nexports.transformMat2d = transformMat2d;\nexports.transformMat3 = transformMat3;\nexports.transformMat4 = transformMat4;\nexports.rotate = rotate;\nexports.angle = angle;\nexports.zero = zero;\nexports.str = str;\nexports.exactEquals = exactEquals;\nexports.equals = equals;\nexports.forEach = exports.sqrLen = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = exports.len = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }\n\n/**\r\n * 2 Dimensional Vector\r\n * @module vec2\r\n */\n\n/**\r\n * Creates a new, empty vec2\r\n *\r\n * @returns {vec2} a new 2D vector\r\n */\nfunction create() {\n var out = new glMatrix.ARRAY_TYPE(2);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[0] = 0;\n out[1] = 0;\n }\n\n return out;\n}\n/**\r\n * Creates a new vec2 initialized with values from an existing vector\r\n *\r\n * @param {ReadonlyVec2} a vector to clone\r\n * @returns {vec2} a new 2D vector\r\n */\n\n\nfunction clone(a) {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = a[0];\n out[1] = a[1];\n return out;\n}\n/**\r\n * Creates a new vec2 initialized with the given values\r\n *\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @returns {vec2} a new 2D vector\r\n */\n\n\nfunction fromValues(x, y) {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = x;\n out[1] = y;\n return out;\n}\n/**\r\n * Copy the values from one vec2 to another\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the source vector\r\n * @returns {vec2} out\r\n */\n\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n return out;\n}\n/**\r\n * Set the components of a vec2 to the given values\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {Number} x X component\r\n * @param {Number} y Y component\r\n * @returns {vec2} out\r\n */\n\n\nfunction set(out, x, y) {\n out[0] = x;\n out[1] = y;\n return out;\n}\n/**\r\n * Adds two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {vec2} out\r\n */\n\n\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n return out;\n}\n/**\r\n * Subtracts vector b from vector a\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {vec2} out\r\n */\n\n\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n return out;\n}\n/**\r\n * Multiplies two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {vec2} out\r\n */\n\n\nfunction multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n return out;\n}\n/**\r\n * Divides two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {vec2} out\r\n */\n\n\nfunction divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n return out;\n}\n/**\r\n * Math.ceil the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a vector to ceil\r\n * @returns {vec2} out\r\n */\n\n\nfunction ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n return out;\n}\n/**\r\n * Math.floor the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a vector to floor\r\n * @returns {vec2} out\r\n */\n\n\nfunction floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n return out;\n}\n/**\r\n * Returns the minimum of two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {vec2} out\r\n */\n\n\nfunction min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n return out;\n}\n/**\r\n * Returns the maximum of two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {vec2} out\r\n */\n\n\nfunction max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n return out;\n}\n/**\r\n * Math.round the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a vector to round\r\n * @returns {vec2} out\r\n */\n\n\nfunction round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n return out;\n}\n/**\r\n * Scales a vec2 by a scalar number\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the vector to scale\r\n * @param {Number} b amount to scale the vector by\r\n * @returns {vec2} out\r\n */\n\n\nfunction scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n return out;\n}\n/**\r\n * Adds two vec2's after scaling the second operand by a scalar value\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @param {Number} scale the amount to scale b by before adding\r\n * @returns {vec2} out\r\n */\n\n\nfunction scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n return out;\n}\n/**\r\n * Calculates the euclidian distance between two vec2's\r\n *\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {Number} distance between a and b\r\n */\n\n\nfunction distance(a, b) {\n var x = b[0] - a[0],\n y = b[1] - a[1];\n return Math.hypot(x, y);\n}\n/**\r\n * Calculates the squared euclidian distance between two vec2's\r\n *\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {Number} squared distance between a and b\r\n */\n\n\nfunction squaredDistance(a, b) {\n var x = b[0] - a[0],\n y = b[1] - a[1];\n return x * x + y * y;\n}\n/**\r\n * Calculates the length of a vec2\r\n *\r\n * @param {ReadonlyVec2} a vector to calculate length of\r\n * @returns {Number} length of a\r\n */\n\n\nfunction length(a) {\n var x = a[0],\n y = a[1];\n return Math.hypot(x, y);\n}\n/**\r\n * Calculates the squared length of a vec2\r\n *\r\n * @param {ReadonlyVec2} a vector to calculate squared length of\r\n * @returns {Number} squared length of a\r\n */\n\n\nfunction squaredLength(a) {\n var x = a[0],\n y = a[1];\n return x * x + y * y;\n}\n/**\r\n * Negates the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a vector to negate\r\n * @returns {vec2} out\r\n */\n\n\nfunction negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n return out;\n}\n/**\r\n * Returns the inverse of the components of a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a vector to invert\r\n * @returns {vec2} out\r\n */\n\n\nfunction inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n return out;\n}\n/**\r\n * Normalize a vec2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a vector to normalize\r\n * @returns {vec2} out\r\n */\n\n\nfunction normalize(out, a) {\n var x = a[0],\n y = a[1];\n var len = x * x + y * y;\n\n if (len > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len = 1 / Math.sqrt(len);\n }\n\n out[0] = a[0] * len;\n out[1] = a[1] * len;\n return out;\n}\n/**\r\n * Calculates the dot product of two vec2's\r\n *\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {Number} dot product of a and b\r\n */\n\n\nfunction dot(a, b) {\n return a[0] * b[0] + a[1] * b[1];\n}\n/**\r\n * Computes the cross product of two vec2's\r\n * Note that the cross product must by definition produce a 3D vector\r\n *\r\n * @param {vec3} out the receiving vector\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @returns {vec3} out\r\n */\n\n\nfunction cross(out, a, b) {\n var z = a[0] * b[1] - a[1] * b[0];\n out[0] = out[1] = 0;\n out[2] = z;\n return out;\n}\n/**\r\n * Performs a linear interpolation between two vec2's\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the first operand\r\n * @param {ReadonlyVec2} b the second operand\r\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\r\n * @returns {vec2} out\r\n */\n\n\nfunction lerp(out, a, b, t) {\n var ax = a[0],\n ay = a[1];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n return out;\n}\n/**\r\n * Generates a random vector with the given scale\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\r\n * @returns {vec2} out\r\n */\n\n\nfunction random(out, scale) {\n scale = scale || 1.0;\n var r = glMatrix.RANDOM() * 2.0 * Math.PI;\n out[0] = Math.cos(r) * scale;\n out[1] = Math.sin(r) * scale;\n return out;\n}\n/**\r\n * Transforms the vec2 with a mat2\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the vector to transform\r\n * @param {ReadonlyMat2} m matrix to transform with\r\n * @returns {vec2} out\r\n */\n\n\nfunction transformMat2(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[2] * y;\n out[1] = m[1] * x + m[3] * y;\n return out;\n}\n/**\r\n * Transforms the vec2 with a mat2d\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the vector to transform\r\n * @param {ReadonlyMat2d} m matrix to transform with\r\n * @returns {vec2} out\r\n */\n\n\nfunction transformMat2d(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[2] * y + m[4];\n out[1] = m[1] * x + m[3] * y + m[5];\n return out;\n}\n/**\r\n * Transforms the vec2 with a mat3\r\n * 3rd vector component is implicitly '1'\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the vector to transform\r\n * @param {ReadonlyMat3} m matrix to transform with\r\n * @returns {vec2} out\r\n */\n\n\nfunction transformMat3(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[3] * y + m[6];\n out[1] = m[1] * x + m[4] * y + m[7];\n return out;\n}\n/**\r\n * Transforms the vec2 with a mat4\r\n * 3rd vector component is implicitly '0'\r\n * 4th vector component is implicitly '1'\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @param {ReadonlyVec2} a the vector to transform\r\n * @param {ReadonlyMat4} m matrix to transform with\r\n * @returns {vec2} out\r\n */\n\n\nfunction transformMat4(out, a, m) {\n var x = a[0];\n var y = a[1];\n out[0] = m[0] * x + m[4] * y + m[12];\n out[1] = m[1] * x + m[5] * y + m[13];\n return out;\n}\n/**\r\n * Rotate a 2D vector\r\n * @param {vec2} out The receiving vec2\r\n * @param {ReadonlyVec2} a The vec2 point to rotate\r\n * @param {ReadonlyVec2} b The origin of the rotation\r\n * @param {Number} rad The angle of rotation in radians\r\n * @returns {vec2} out\r\n */\n\n\nfunction rotate(out, a, b, rad) {\n //Translate point to the origin\n var p0 = a[0] - b[0],\n p1 = a[1] - b[1],\n sinC = Math.sin(rad),\n cosC = Math.cos(rad); //perform rotation and translate to correct position\n\n out[0] = p0 * cosC - p1 * sinC + b[0];\n out[1] = p0 * sinC + p1 * cosC + b[1];\n return out;\n}\n/**\r\n * Get the angle between two 2D vectors\r\n * @param {ReadonlyVec2} a The first operand\r\n * @param {ReadonlyVec2} b The second operand\r\n * @returns {Number} The angle in radians\r\n */\n\n\nfunction angle(a, b) {\n var x1 = a[0],\n y1 = a[1],\n x2 = b[0],\n y2 = b[1],\n // mag is the product of the magnitudes of a and b\n mag = Math.sqrt(x1 * x1 + y1 * y1) * Math.sqrt(x2 * x2 + y2 * y2),\n // mag &&.. short circuits if mag == 0\n cosine = mag && (x1 * x2 + y1 * y2) / mag; // Math.min(Math.max(cosine, -1), 1) clamps the cosine between -1 and 1\n\n return Math.acos(Math.min(Math.max(cosine, -1), 1));\n}\n/**\r\n * Set the components of a vec2 to zero\r\n *\r\n * @param {vec2} out the receiving vector\r\n * @returns {vec2} out\r\n */\n\n\nfunction zero(out) {\n out[0] = 0.0;\n out[1] = 0.0;\n return out;\n}\n/**\r\n * Returns a string representation of a vector\r\n *\r\n * @param {ReadonlyVec2} a vector to represent as a string\r\n * @returns {String} string representation of the vector\r\n */\n\n\nfunction str(a) {\n return \"vec2(\" + a[0] + \", \" + a[1] + \")\";\n}\n/**\r\n * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyVec2} a The first vector.\r\n * @param {ReadonlyVec2} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\n\n\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1];\n}\n/**\r\n * Returns whether or not the vectors have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyVec2} a The first vector.\r\n * @param {ReadonlyVec2} b The second vector.\r\n * @returns {Boolean} True if the vectors are equal, false otherwise.\r\n */\n\n\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1];\n var b0 = b[0],\n b1 = b[1];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1));\n}\n/**\r\n * Alias for {@link vec2.length}\r\n * @function\r\n */\n\n\nvar len = length;\n/**\r\n * Alias for {@link vec2.subtract}\r\n * @function\r\n */\n\nexports.len = len;\nvar sub = subtract;\n/**\r\n * Alias for {@link vec2.multiply}\r\n * @function\r\n */\n\nexports.sub = sub;\nvar mul = multiply;\n/**\r\n * Alias for {@link vec2.divide}\r\n * @function\r\n */\n\nexports.mul = mul;\nvar div = divide;\n/**\r\n * Alias for {@link vec2.distance}\r\n * @function\r\n */\n\nexports.div = div;\nvar dist = distance;\n/**\r\n * Alias for {@link vec2.squaredDistance}\r\n * @function\r\n */\n\nexports.dist = dist;\nvar sqrDist = squaredDistance;\n/**\r\n * Alias for {@link vec2.squaredLength}\r\n * @function\r\n */\n\nexports.sqrDist = sqrDist;\nvar sqrLen = squaredLength;\n/**\r\n * Perform some operation over an array of vec2s.\r\n *\r\n * @param {Array} a the array of vectors to iterate over\r\n * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed\r\n * @param {Number} offset Number of elements to skip at the beginning of the array\r\n * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array\r\n * @param {Function} fn Function to call for each vector in the array\r\n * @param {Object} [arg] additional argument to pass to fn\r\n * @returns {Array} a\r\n * @function\r\n */\n\nexports.sqrLen = sqrLen;\n\nvar forEach = function () {\n var vec = create();\n return function (a, stride, offset, count, fn, arg) {\n var i, l;\n\n if (!stride) {\n stride = 2;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];\n vec[1] = a[i + 1];\n fn(vec, vec, arg);\n a[i] = vec[0];\n a[i + 1] = vec[1];\n }\n\n return a;\n };\n}();\n\nexports.forEach = forEach;", "\"use strict\";\n\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nexports.vec4 = exports.vec3 = exports.vec2 = exports.quat2 = exports.quat = exports.mat4 = exports.mat3 = exports.mat2d = exports.mat2 = exports.glMatrix = void 0;\n\nvar glMatrix = _interopRequireWildcard(require(\"./common.js\"));\n\nexports.glMatrix = glMatrix;\n\nvar mat2 = _interopRequireWildcard(require(\"./mat2.js\"));\n\nexports.mat2 = mat2;\n\nvar mat2d = _interopRequireWildcard(require(\"./mat2d.js\"));\n\nexports.mat2d = mat2d;\n\nvar mat3 = _interopRequireWildcard(require(\"./mat3.js\"));\n\nexports.mat3 = mat3;\n\nvar mat4 = _interopRequireWildcard(require(\"./mat4.js\"));\n\nexports.mat4 = mat4;\n\nvar quat = _interopRequireWildcard(require(\"./quat.js\"));\n\nexports.quat = quat;\n\nvar quat2 = _interopRequireWildcard(require(\"./quat2.js\"));\n\nexports.quat2 = quat2;\n\nvar vec2 = _interopRequireWildcard(require(\"./vec2.js\"));\n\nexports.vec2 = vec2;\n\nvar vec3 = _interopRequireWildcard(require(\"./vec3.js\"));\n\nexports.vec3 = vec3;\n\nvar vec4 = _interopRequireWildcard(require(\"./vec4.js\"));\n\nexports.vec4 = vec4;\n\nfunction _getRequireWildcardCache() { if (typeof WeakMap !== \"function\") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }\n\nfunction _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== \"object\" && typeof obj !== \"function\") { return { \"default\": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj[\"default\"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }", null, null, null, null, null, null, null, null, null, null, "/*! *****************************************************************************\nCopyright (C) Microsoft. All rights reserved.\nLicensed under the Apache License, Version 2.0 (the \"License\"); you may not use\nthis file except in compliance with the License. You may obtain a copy of the\nLicense at http://www.apache.org/licenses/LICENSE-2.0\n\nTHIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\nKIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED\nWARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,\nMERCHANTABLITY OR NON-INFRINGEMENT.\n\nSee the Apache Version 2.0 License for specific language governing permissions\nand limitations under the License.\n***************************************************************************** */\nvar Reflect;\n(function (Reflect) {\n // Metadata Proposal\n // https://rbuckton.github.io/reflect-metadata/\n (function (factory) {\n var root = typeof global === \"object\" ? global :\n typeof self === \"object\" ? self :\n typeof this === \"object\" ? this :\n Function(\"return this;\")();\n var exporter = makeExporter(Reflect);\n if (typeof root.Reflect === \"undefined\") {\n root.Reflect = Reflect;\n }\n else {\n exporter = makeExporter(root.Reflect, exporter);\n }\n factory(exporter);\n function makeExporter(target, previous) {\n return function (key, value) {\n if (typeof target[key] !== \"function\") {\n Object.defineProperty(target, key, { configurable: true, writable: true, value: value });\n }\n if (previous)\n previous(key, value);\n };\n }\n })(function (exporter) {\n var hasOwn = Object.prototype.hasOwnProperty;\n // feature test for Symbol support\n var supportsSymbol = typeof Symbol === \"function\";\n var toPrimitiveSymbol = supportsSymbol && typeof Symbol.toPrimitive !== \"undefined\" ? Symbol.toPrimitive : \"@@toPrimitive\";\n var iteratorSymbol = supportsSymbol && typeof Symbol.iterator !== \"undefined\" ? Symbol.iterator : \"@@iterator\";\n var supportsCreate = typeof Object.create === \"function\"; // feature test for Object.create support\n var supportsProto = { __proto__: [] } instanceof Array; // feature test for __proto__ support\n var downLevel = !supportsCreate && !supportsProto;\n var HashMap = {\n // create an object in dictionary mode (a.k.a. \"slow\" mode in v8)\n create: supportsCreate\n ? function () { return MakeDictionary(Object.create(null)); }\n : supportsProto\n ? function () { return MakeDictionary({ __proto__: null }); }\n : function () { return MakeDictionary({}); },\n has: downLevel\n ? function (map, key) { return hasOwn.call(map, key); }\n : function (map, key) { return key in map; },\n get: downLevel\n ? function (map, key) { return hasOwn.call(map, key) ? map[key] : undefined; }\n : function (map, key) { return map[key]; },\n };\n // Load global or shim versions of Map, Set, and WeakMap\n var functionPrototype = Object.getPrototypeOf(Function);\n var usePolyfill = typeof process === \"object\" && process.env && process.env[\"REFLECT_METADATA_USE_MAP_POLYFILL\"] === \"true\";\n var _Map = !usePolyfill && typeof Map === \"function\" && typeof Map.prototype.entries === \"function\" ? Map : CreateMapPolyfill();\n var _Set = !usePolyfill && typeof Set === \"function\" && typeof Set.prototype.entries === \"function\" ? Set : CreateSetPolyfill();\n var _WeakMap = !usePolyfill && typeof WeakMap === \"function\" ? WeakMap : CreateWeakMapPolyfill();\n // [[Metadata]] internal slot\n // https://rbuckton.github.io/reflect-metadata/#ordinary-object-internal-methods-and-internal-slots\n var Metadata = new _WeakMap();\n /**\n * Applies a set of decorators to a property of a target object.\n * @param decorators An array of decorators.\n * @param target The target object.\n * @param propertyKey (Optional) The property key to decorate.\n * @param attributes (Optional) The property descriptor for the target key.\n * @remarks Decorators are applied in reverse order.\n * @example\n *\n * class Example {\n * // property declarations are not part of ES6, though they are valid in TypeScript:\n * // static staticProperty;\n * // property;\n *\n * constructor(p) { }\n * static staticMethod(p) { }\n * method(p) { }\n * }\n *\n * // constructor\n * Example = Reflect.decorate(decoratorsArray, Example);\n *\n * // property (on constructor)\n * Reflect.decorate(decoratorsArray, Example, \"staticProperty\");\n *\n * // property (on prototype)\n * Reflect.decorate(decoratorsArray, Example.prototype, \"property\");\n *\n * // method (on constructor)\n * Object.defineProperty(Example, \"staticMethod\",\n * Reflect.decorate(decoratorsArray, Example, \"staticMethod\",\n * Object.getOwnPropertyDescriptor(Example, \"staticMethod\")));\n *\n * // method (on prototype)\n * Object.defineProperty(Example.prototype, \"method\",\n * Reflect.decorate(decoratorsArray, Example.prototype, \"method\",\n * Object.getOwnPropertyDescriptor(Example.prototype, \"method\")));\n *\n */\n function decorate(decorators, target, propertyKey, attributes) {\n if (!IsUndefined(propertyKey)) {\n if (!IsArray(decorators))\n throw new TypeError();\n if (!IsObject(target))\n throw new TypeError();\n if (!IsObject(attributes) && !IsUndefined(attributes) && !IsNull(attributes))\n throw new TypeError();\n if (IsNull(attributes))\n attributes = undefined;\n propertyKey = ToPropertyKey(propertyKey);\n return DecorateProperty(decorators, target, propertyKey, attributes);\n }\n else {\n if (!IsArray(decorators))\n throw new TypeError();\n if (!IsConstructor(target))\n throw new TypeError();\n return DecorateConstructor(decorators, target);\n }\n }\n exporter(\"decorate\", decorate);\n // 4.1.2 Reflect.metadata(metadataKey, metadataValue)\n // https://rbuckton.github.io/reflect-metadata/#reflect.metadata\n /**\n * A default metadata decorator factory that can be used on a class, class member, or parameter.\n * @param metadataKey The key for the metadata entry.\n * @param metadataValue The value for the metadata entry.\n * @returns A decorator function.\n * @remarks\n * If `metadataKey` is already defined for the target and target key, the\n * metadataValue for that key will be overwritten.\n * @example\n *\n * // constructor\n * @Reflect.metadata(key, value)\n * class Example {\n * }\n *\n * // property (on constructor, TypeScript only)\n * class Example {\n * @Reflect.metadata(key, value)\n * static staticProperty;\n * }\n *\n * // property (on prototype, TypeScript only)\n * class Example {\n * @Reflect.metadata(key, value)\n * property;\n * }\n *\n * // method (on constructor)\n * class Example {\n * @Reflect.metadata(key, value)\n * static staticMethod() { }\n * }\n *\n * // method (on prototype)\n * class Example {\n * @Reflect.metadata(key, value)\n * method() { }\n * }\n *\n */\n function metadata(metadataKey, metadataValue) {\n function decorator(target, propertyKey) {\n if (!IsObject(target))\n throw new TypeError();\n if (!IsUndefined(propertyKey) && !IsPropertyKey(propertyKey))\n throw new TypeError();\n OrdinaryDefineOwnMetadata(metadataKey, metadataValue, target, propertyKey);\n }\n return decorator;\n }\n exporter(\"metadata\", metadata);\n /**\n * Define a unique metadata entry on the target.\n * @param metadataKey A key used to store and retrieve metadata.\n * @param metadataValue A value that contains attached metadata.\n * @param target The target object on which to define metadata.\n * @param propertyKey (Optional) The property key for the target.\n * @example\n *\n * class Example {\n * // property declarations are not part of ES6, though they are valid in TypeScript:\n * // static staticProperty;\n * // property;\n *\n * constructor(p) { }\n * static staticMethod(p) { }\n * method(p) { }\n * }\n *\n * // constructor\n * Reflect.defineMetadata(\"custom:annotation\", options, Example);\n *\n * // property (on constructor)\n * Reflect.defineMetadata(\"custom:annotation\", options, Example, \"staticProperty\");\n *\n * // property (on prototype)\n * Reflect.defineMetadata(\"custom:annotation\", options, Example.prototype, \"property\");\n *\n * // method (on constructor)\n * Reflect.defineMetadata(\"custom:annotation\", options, Example, \"staticMethod\");\n *\n * // method (on prototype)\n * Reflect.defineMetadata(\"custom:annotation\", options, Example.prototype, \"method\");\n *\n * // decorator factory as metadata-producing annotation.\n * function MyAnnotation(options): Decorator {\n * return (target, key?) => Reflect.defineMetadata(\"custom:annotation\", options, target, key);\n * }\n *\n */\n function defineMetadata(metadataKey, metadataValue, target, propertyKey) {\n if (!IsObject(target))\n throw new TypeError();\n if (!IsUndefined(propertyKey))\n propertyKey = ToPropertyKey(propertyKey);\n return OrdinaryDefineOwnMetadata(metadataKey, metadataValue, target, propertyKey);\n }\n exporter(\"defineMetadata\", defineMetadata);\n /**\n * Gets a value indicating whether the target object or its prototype chain has the provided metadata key defined.\n * @param metadataKey A key used to store and retrieve metadata.\n * @param target The target object on which the metadata is defined.\n * @param propertyKey (Optional) The property key for the target.\n * @returns `true` if the metadata key was defined on the target object or its prototype chain; otherwise, `false`.\n * @example\n *\n * class Example {\n * // property declarations are not part of ES6, though they are valid in TypeScript:\n * // static staticProperty;\n * // property;\n *\n * constructor(p) { }\n * static staticMethod(p) { }\n * method(p) { }\n * }\n *\n * // constructor\n * result = Reflect.hasMetadata(\"custom:annotation\", Example);\n *\n * // property (on constructor)\n * result = Reflect.hasMetadata(\"custom:annotation\", Example, \"staticProperty\");\n *\n * // property (on prototype)\n * result = Reflect.hasMetadata(\"custom:annotation\", Example.prototype, \"property\");\n *\n * // method (on constructor)\n * result = Reflect.hasMetadata(\"custom:annotation\", Example, \"staticMethod\");\n *\n * // method (on prototype)\n * result = Reflect.hasMetadata(\"custom:annotation\", Example.prototype, \"method\");\n *\n */\n function hasMetadata(metadataKey, target, propertyKey) {\n if (!IsObject(target))\n throw new TypeError();\n if (!IsUndefined(propertyKey))\n propertyKey = ToPropertyKey(propertyKey);\n return OrdinaryHasMetadata(metadataKey, target, propertyKey);\n }\n exporter(\"hasMetadata\", hasMetadata);\n /**\n * Gets a value indicating whether the target object has the provided metadata key defined.\n * @param metadataKey A key used to store and retrieve metadata.\n * @param target The target object on which the metadata is defined.\n * @param propertyKey (Optional) The property key for the target.\n * @returns `true` if the metadata key was defined on the target object; otherwise, `false`.\n * @example\n *\n * class Example {\n * // property declarations are not part of ES6, though they are valid in TypeScript:\n * // static staticProperty;\n * // property;\n *\n * constructor(p) { }\n * static staticMethod(p) { }\n * method(p) { }\n * }\n *\n * // constructor\n * result = Reflect.hasOwnMetadata(\"custom:annotation\", Example);\n *\n * // property (on constructor)\n * result = Reflect.hasOwnMetadata(\"custom:annotation\", Example, \"staticProperty\");\n *\n * // property (on prototype)\n * result = Reflect.hasOwnMetadata(\"custom:annotation\", Example.prototype, \"property\");\n *\n * // method (on constructor)\n * result = Reflect.hasOwnMetadata(\"custom:annotation\", Example, \"staticMethod\");\n *\n * // method (on prototype)\n * result = Reflect.hasOwnMetadata(\"custom:annotation\", Example.prototype, \"method\");\n *\n */\n function hasOwnMetadata(metadataKey, target, propertyKey) {\n if (!IsObject(target))\n throw new TypeError();\n if (!IsUndefined(propertyKey))\n propertyKey = ToPropertyKey(propertyKey);\n return OrdinaryHasOwnMetadata(metadataKey, target, propertyKey);\n }\n exporter(\"hasOwnMetadata\", hasOwnMetadata);\n /**\n * Gets the metadata value for the provided metadata key on the target object or its prototype chain.\n * @param metadataKey A key used to store and retrieve metadata.\n * @param target The target object on which the metadata is defined.\n * @param propertyKey (Optional) The property key for the target.\n * @returns The metadata value for the metadata key if found; otherwise, `undefined`.\n * @example\n *\n * class Example {\n * // property declarations are not part of ES6, though they are valid in TypeScript:\n * // static staticProperty;\n * // property;\n *\n * constructor(p) { }\n * static staticMethod(p) { }\n * method(p) { }\n * }\n *\n * // constructor\n * result = Reflect.getMetadata(\"custom:annotation\", Example);\n *\n * // property (on constructor)\n * result = Reflect.getMetadata(\"custom:annotation\", Example, \"staticProperty\");\n *\n * // property (on prototype)\n * result = Reflect.getMetadata(\"custom:annotation\", Example.prototype, \"property\");\n *\n * // method (on constructor)\n * result = Reflect.getMetadata(\"custom:annotation\", Example, \"staticMethod\");\n *\n * // method (on prototype)\n * result = Reflect.getMetadata(\"custom:annotation\", Example.prototype, \"method\");\n *\n */\n function getMetadata(metadataKey, target, propertyKey) {\n if (!IsObject(target))\n throw new TypeError();\n if (!IsUndefined(propertyKey))\n propertyKey = ToPropertyKey(propertyKey);\n return OrdinaryGetMetadata(metadataKey, target, propertyKey);\n }\n exporter(\"getMetadata\", getMetadata);\n /**\n * Gets the metadata value for the provided metadata key on the target object.\n * @param metadataKey A key used to store and retrieve metadata.\n * @param target The target object on which the metadata is defined.\n * @param propertyKey (Optional) The property key for the target.\n * @returns The metadata value for the metadata key if found; otherwise, `undefined`.\n * @example\n *\n * class Example {\n * // property declarations are not part of ES6, though they are valid in TypeScript:\n * // static staticProperty;\n * // property;\n *\n * constructor(p) { }\n * static staticMethod(p) { }\n * method(p) { }\n * }\n *\n * // constructor\n * result = Reflect.getOwnMetadata(\"custom:annotation\", Example);\n *\n * // property (on constructor)\n * result = Reflect.getOwnMetadata(\"custom:annotation\", Example, \"staticProperty\");\n *\n * // property (on prototype)\n * result = Reflect.getOwnMetadata(\"custom:annotation\", Example.prototype, \"property\");\n *\n * // method (on constructor)\n * result = Reflect.getOwnMetadata(\"custom:annotation\", Example, \"staticMethod\");\n *\n * // method (on prototype)\n * result = Reflect.getOwnMetadata(\"custom:annotation\", Example.prototype, \"method\");\n *\n */\n function getOwnMetadata(metadataKey, target, propertyKey) {\n if (!IsObject(target))\n throw new TypeError();\n if (!IsUndefined(propertyKey))\n propertyKey = ToPropertyKey(propertyKey);\n return OrdinaryGetOwnMetadata(metadataKey, target, propertyKey);\n }\n exporter(\"getOwnMetadata\", getOwnMetadata);\n /**\n * Gets the metadata keys defined on the target object or its prototype chain.\n * @param target The target object on which the metadata is defined.\n * @param propertyKey (Optional) The property key for the target.\n * @returns An array of unique metadata keys.\n * @example\n *\n * class Example {\n * // property declarations are not part of ES6, though they are valid in TypeScript:\n * // static staticProperty;\n * // property;\n *\n * constructor(p) { }\n * static staticMethod(p) { }\n * method(p) { }\n * }\n *\n * // constructor\n * result = Reflect.getMetadataKeys(Example);\n *\n * // property (on constructor)\n * result = Reflect.getMetadataKeys(Example, \"staticProperty\");\n *\n * // property (on prototype)\n * result = Reflect.getMetadataKeys(Example.prototype, \"property\");\n *\n * // method (on constructor)\n * result = Reflect.getMetadataKeys(Example, \"staticMethod\");\n *\n * // method (on prototype)\n * result = Reflect.getMetadataKeys(Example.prototype, \"method\");\n *\n */\n function getMetadataKeys(target, propertyKey) {\n if (!IsObject(target))\n throw new TypeError();\n if (!IsUndefined(propertyKey))\n propertyKey = ToPropertyKey(propertyKey);\n return OrdinaryMetadataKeys(target, propertyKey);\n }\n exporter(\"getMetadataKeys\", getMetadataKeys);\n /**\n * Gets the unique metadata keys defined on the target object.\n * @param target The target object on which the metadata is defined.\n * @param propertyKey (Optional) The property key for the target.\n * @returns An array of unique metadata keys.\n * @example\n *\n * class Example {\n * // property declarations are not part of ES6, though they are valid in TypeScript:\n * // static staticProperty;\n * // property;\n *\n * constructor(p) { }\n * static staticMethod(p) { }\n * method(p) { }\n * }\n *\n * // constructor\n * result = Reflect.getOwnMetadataKeys(Example);\n *\n * // property (on constructor)\n * result = Reflect.getOwnMetadataKeys(Example, \"staticProperty\");\n *\n * // property (on prototype)\n * result = Reflect.getOwnMetadataKeys(Example.prototype, \"property\");\n *\n * // method (on constructor)\n * result = Reflect.getOwnMetadataKeys(Example, \"staticMethod\");\n *\n * // method (on prototype)\n * result = Reflect.getOwnMetadataKeys(Example.prototype, \"method\");\n *\n */\n function getOwnMetadataKeys(target, propertyKey) {\n if (!IsObject(target))\n throw new TypeError();\n if (!IsUndefined(propertyKey))\n propertyKey = ToPropertyKey(propertyKey);\n return OrdinaryOwnMetadataKeys(target, propertyKey);\n }\n exporter(\"getOwnMetadataKeys\", getOwnMetadataKeys);\n /**\n * Deletes the metadata entry from the target object with the provided key.\n * @param metadataKey A key used to store and retrieve metadata.\n * @param target The target object on which the metadata is defined.\n * @param propertyKey (Optional) The property key for the target.\n * @returns `true` if the metadata entry was found and deleted; otherwise, false.\n * @example\n *\n * class Example {\n * // property declarations are not part of ES6, though they are valid in TypeScript:\n * // static staticProperty;\n * // property;\n *\n * constructor(p) { }\n * static staticMethod(p) { }\n * method(p) { }\n * }\n *\n * // constructor\n * result = Reflect.deleteMetadata(\"custom:annotation\", Example);\n *\n * // property (on constructor)\n * result = Reflect.deleteMetadata(\"custom:annotation\", Example, \"staticProperty\");\n *\n * // property (on prototype)\n * result = Reflect.deleteMetadata(\"custom:annotation\", Example.prototype, \"property\");\n *\n * // method (on constructor)\n * result = Reflect.deleteMetadata(\"custom:annotation\", Example, \"staticMethod\");\n *\n * // method (on prototype)\n * result = Reflect.deleteMetadata(\"custom:annotation\", Example.prototype, \"method\");\n *\n */\n function deleteMetadata(metadataKey, target, propertyKey) {\n if (!IsObject(target))\n throw new TypeError();\n if (!IsUndefined(propertyKey))\n propertyKey = ToPropertyKey(propertyKey);\n var metadataMap = GetOrCreateMetadataMap(target, propertyKey, /*Create*/ false);\n if (IsUndefined(metadataMap))\n return false;\n if (!metadataMap.delete(metadataKey))\n return false;\n if (metadataMap.size > 0)\n return true;\n var targetMetadata = Metadata.get(target);\n targetMetadata.delete(propertyKey);\n if (targetMetadata.size > 0)\n return true;\n Metadata.delete(target);\n return true;\n }\n exporter(\"deleteMetadata\", deleteMetadata);\n function DecorateConstructor(decorators, target) {\n for (var i = decorators.length - 1; i >= 0; --i) {\n var decorator = decorators[i];\n var decorated = decorator(target);\n if (!IsUndefined(decorated) && !IsNull(decorated)) {\n if (!IsConstructor(decorated))\n throw new TypeError();\n target = decorated;\n }\n }\n return target;\n }\n function DecorateProperty(decorators, target, propertyKey, descriptor) {\n for (var i = decorators.length - 1; i >= 0; --i) {\n var decorator = decorators[i];\n var decorated = decorator(target, propertyKey, descriptor);\n if (!IsUndefined(decorated) && !IsNull(decorated)) {\n if (!IsObject(decorated))\n throw new TypeError();\n descriptor = decorated;\n }\n }\n return descriptor;\n }\n function GetOrCreateMetadataMap(O, P, Create) {\n var targetMetadata = Metadata.get(O);\n if (IsUndefined(targetMetadata)) {\n if (!Create)\n return undefined;\n targetMetadata = new _Map();\n Metadata.set(O, targetMetadata);\n }\n var metadataMap = targetMetadata.get(P);\n if (IsUndefined(metadataMap)) {\n if (!Create)\n return undefined;\n metadataMap = new _Map();\n targetMetadata.set(P, metadataMap);\n }\n return metadataMap;\n }\n // 3.1.1.1 OrdinaryHasMetadata(MetadataKey, O, P)\n // https://rbuckton.github.io/reflect-metadata/#ordinaryhasmetadata\n function OrdinaryHasMetadata(MetadataKey, O, P) {\n var hasOwn = OrdinaryHasOwnMetadata(MetadataKey, O, P);\n if (hasOwn)\n return true;\n var parent = OrdinaryGetPrototypeOf(O);\n if (!IsNull(parent))\n return OrdinaryHasMetadata(MetadataKey, parent, P);\n return false;\n }\n // 3.1.2.1 OrdinaryHasOwnMetadata(MetadataKey, O, P)\n // https://rbuckton.github.io/reflect-metadata/#ordinaryhasownmetadata\n function OrdinaryHasOwnMetadata(MetadataKey, O, P) {\n var metadataMap = GetOrCreateMetadataMap(O, P, /*Create*/ false);\n if (IsUndefined(metadataMap))\n return false;\n return ToBoolean(metadataMap.has(MetadataKey));\n }\n // 3.1.3.1 OrdinaryGetMetadata(MetadataKey, O, P)\n // https://rbuckton.github.io/reflect-metadata/#ordinarygetmetadata\n function OrdinaryGetMetadata(MetadataKey, O, P) {\n var hasOwn = OrdinaryHasOwnMetadata(MetadataKey, O, P);\n if (hasOwn)\n return OrdinaryGetOwnMetadata(MetadataKey, O, P);\n var parent = OrdinaryGetPrototypeOf(O);\n if (!IsNull(parent))\n return OrdinaryGetMetadata(MetadataKey, parent, P);\n return undefined;\n }\n // 3.1.4.1 OrdinaryGetOwnMetadata(MetadataKey, O, P)\n // https://rbuckton.github.io/reflect-metadata/#ordinarygetownmetadata\n function OrdinaryGetOwnMetadata(MetadataKey, O, P) {\n var metadataMap = GetOrCreateMetadataMap(O, P, /*Create*/ false);\n if (IsUndefined(metadataMap))\n return undefined;\n return metadataMap.get(MetadataKey);\n }\n // 3.1.5.1 OrdinaryDefineOwnMetadata(MetadataKey, MetadataValue, O, P)\n // https://rbuckton.github.io/reflect-metadata/#ordinarydefineownmetadata\n function OrdinaryDefineOwnMetadata(MetadataKey, MetadataValue, O, P) {\n var metadataMap = GetOrCreateMetadataMap(O, P, /*Create*/ true);\n metadataMap.set(MetadataKey, MetadataValue);\n }\n // 3.1.6.1 OrdinaryMetadataKeys(O, P)\n // https://rbuckton.github.io/reflect-metadata/#ordinarymetadatakeys\n function OrdinaryMetadataKeys(O, P) {\n var ownKeys = OrdinaryOwnMetadataKeys(O, P);\n var parent = OrdinaryGetPrototypeOf(O);\n if (parent === null)\n return ownKeys;\n var parentKeys = OrdinaryMetadataKeys(parent, P);\n if (parentKeys.length <= 0)\n return ownKeys;\n if (ownKeys.length <= 0)\n return parentKeys;\n var set = new _Set();\n var keys = [];\n for (var _i = 0, ownKeys_1 = ownKeys; _i < ownKeys_1.length; _i++) {\n var key = ownKeys_1[_i];\n var hasKey = set.has(key);\n if (!hasKey) {\n set.add(key);\n keys.push(key);\n }\n }\n for (var _a = 0, parentKeys_1 = parentKeys; _a < parentKeys_1.length; _a++) {\n var key = parentKeys_1[_a];\n var hasKey = set.has(key);\n if (!hasKey) {\n set.add(key);\n keys.push(key);\n }\n }\n return keys;\n }\n // 3.1.7.1 OrdinaryOwnMetadataKeys(O, P)\n // https://rbuckton.github.io/reflect-metadata/#ordinaryownmetadatakeys\n function OrdinaryOwnMetadataKeys(O, P) {\n var keys = [];\n var metadataMap = GetOrCreateMetadataMap(O, P, /*Create*/ false);\n if (IsUndefined(metadataMap))\n return keys;\n var keysObj = metadataMap.keys();\n var iterator = GetIterator(keysObj);\n var k = 0;\n while (true) {\n var next = IteratorStep(iterator);\n if (!next) {\n keys.length = k;\n return keys;\n }\n var nextValue = IteratorValue(next);\n try {\n keys[k] = nextValue;\n }\n catch (e) {\n try {\n IteratorClose(iterator);\n }\n finally {\n throw e;\n }\n }\n k++;\n }\n }\n // 6 ECMAScript Data Typ0es and Values\n // https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values\n function Type(x) {\n if (x === null)\n return 1 /* Null */;\n switch (typeof x) {\n case \"undefined\": return 0 /* Undefined */;\n case \"boolean\": return 2 /* Boolean */;\n case \"string\": return 3 /* String */;\n case \"symbol\": return 4 /* Symbol */;\n case \"number\": return 5 /* Number */;\n case \"object\": return x === null ? 1 /* Null */ : 6 /* Object */;\n default: return 6 /* Object */;\n }\n }\n // 6.1.1 The Undefined Type\n // https://tc39.github.io/ecma262/#sec-ecmascript-language-types-undefined-type\n function IsUndefined(x) {\n return x === undefined;\n }\n // 6.1.2 The Null Type\n // https://tc39.github.io/ecma262/#sec-ecmascript-language-types-null-type\n function IsNull(x) {\n return x === null;\n }\n // 6.1.5 The Symbol Type\n // https://tc39.github.io/ecma262/#sec-ecmascript-language-types-symbol-type\n function IsSymbol(x) {\n return typeof x === \"symbol\";\n }\n // 6.1.7 The Object Type\n // https://tc39.github.io/ecma262/#sec-object-type\n function IsObject(x) {\n return typeof x === \"object\" ? x !== null : typeof x === \"function\";\n }\n // 7.1 Type Conversion\n // https://tc39.github.io/ecma262/#sec-type-conversion\n // 7.1.1 ToPrimitive(input [, PreferredType])\n // https://tc39.github.io/ecma262/#sec-toprimitive\n function ToPrimitive(input, PreferredType) {\n switch (Type(input)) {\n case 0 /* Undefined */: return input;\n case 1 /* Null */: return input;\n case 2 /* Boolean */: return input;\n case 3 /* String */: return input;\n case 4 /* Symbol */: return input;\n case 5 /* Number */: return input;\n }\n var hint = PreferredType === 3 /* String */ ? \"string\" : PreferredType === 5 /* Number */ ? \"number\" : \"default\";\n var exoticToPrim = GetMethod(input, toPrimitiveSymbol);\n if (exoticToPrim !== undefined) {\n var result = exoticToPrim.call(input, hint);\n if (IsObject(result))\n throw new TypeError();\n return result;\n }\n return OrdinaryToPrimitive(input, hint === \"default\" ? \"number\" : hint);\n }\n // 7.1.1.1 OrdinaryToPrimitive(O, hint)\n // https://tc39.github.io/ecma262/#sec-ordinarytoprimitive\n function OrdinaryToPrimitive(O, hint) {\n if (hint === \"string\") {\n var toString_1 = O.toString;\n if (IsCallable(toString_1)) {\n var result = toString_1.call(O);\n if (!IsObject(result))\n return result;\n }\n var valueOf = O.valueOf;\n if (IsCallable(valueOf)) {\n var result = valueOf.call(O);\n if (!IsObject(result))\n return result;\n }\n }\n else {\n var valueOf = O.valueOf;\n if (IsCallable(valueOf)) {\n var result = valueOf.call(O);\n if (!IsObject(result))\n return result;\n }\n var toString_2 = O.toString;\n if (IsCallable(toString_2)) {\n var result = toString_2.call(O);\n if (!IsObject(result))\n return result;\n }\n }\n throw new TypeError();\n }\n // 7.1.2 ToBoolean(argument)\n // https://tc39.github.io/ecma262/2016/#sec-toboolean\n function ToBoolean(argument) {\n return !!argument;\n }\n // 7.1.12 ToString(argument)\n // https://tc39.github.io/ecma262/#sec-tostring\n function ToString(argument) {\n return \"\" + argument;\n }\n // 7.1.14 ToPropertyKey(argument)\n // https://tc39.github.io/ecma262/#sec-topropertykey\n function ToPropertyKey(argument) {\n var key = ToPrimitive(argument, 3 /* String */);\n if (IsSymbol(key))\n return key;\n return ToString(key);\n }\n // 7.2 Testing and Comparison Operations\n // https://tc39.github.io/ecma262/#sec-testing-and-comparison-operations\n // 7.2.2 IsArray(argument)\n // https://tc39.github.io/ecma262/#sec-isarray\n function IsArray(argument) {\n return Array.isArray\n ? Array.isArray(argument)\n : argument instanceof Object\n ? argument instanceof Array\n : Object.prototype.toString.call(argument) === \"[object Array]\";\n }\n // 7.2.3 IsCallable(argument)\n // https://tc39.github.io/ecma262/#sec-iscallable\n function IsCallable(argument) {\n // NOTE: This is an approximation as we cannot check for [[Call]] internal method.\n return typeof argument === \"function\";\n }\n // 7.2.4 IsConstructor(argument)\n // https://tc39.github.io/ecma262/#sec-isconstructor\n function IsConstructor(argument) {\n // NOTE: This is an approximation as we cannot check for [[Construct]] internal method.\n return typeof argument === \"function\";\n }\n // 7.2.7 IsPropertyKey(argument)\n // https://tc39.github.io/ecma262/#sec-ispropertykey\n function IsPropertyKey(argument) {\n switch (Type(argument)) {\n case 3 /* String */: return true;\n case 4 /* Symbol */: return true;\n default: return false;\n }\n }\n // 7.3 Operations on Objects\n // https://tc39.github.io/ecma262/#sec-operations-on-objects\n // 7.3.9 GetMethod(V, P)\n // https://tc39.github.io/ecma262/#sec-getmethod\n function GetMethod(V, P) {\n var func = V[P];\n if (func === undefined || func === null)\n return undefined;\n if (!IsCallable(func))\n throw new TypeError();\n return func;\n }\n // 7.4 Operations on Iterator Objects\n // https://tc39.github.io/ecma262/#sec-operations-on-iterator-objects\n function GetIterator(obj) {\n var method = GetMethod(obj, iteratorSymbol);\n if (!IsCallable(method))\n throw new TypeError(); // from Call\n var iterator = method.call(obj);\n if (!IsObject(iterator))\n throw new TypeError();\n return iterator;\n }\n // 7.4.4 IteratorValue(iterResult)\n // https://tc39.github.io/ecma262/2016/#sec-iteratorvalue\n function IteratorValue(iterResult) {\n return iterResult.value;\n }\n // 7.4.5 IteratorStep(iterator)\n // https://tc39.github.io/ecma262/#sec-iteratorstep\n function IteratorStep(iterator) {\n var result = iterator.next();\n return result.done ? false : result;\n }\n // 7.4.6 IteratorClose(iterator, completion)\n // https://tc39.github.io/ecma262/#sec-iteratorclose\n function IteratorClose(iterator) {\n var f = iterator[\"return\"];\n if (f)\n f.call(iterator);\n }\n // 9.1 Ordinary Object Internal Methods and Internal Slots\n // https://tc39.github.io/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots\n // 9.1.1.1 OrdinaryGetPrototypeOf(O)\n // https://tc39.github.io/ecma262/#sec-ordinarygetprototypeof\n function OrdinaryGetPrototypeOf(O) {\n var proto = Object.getPrototypeOf(O);\n if (typeof O !== \"function\" || O === functionPrototype)\n return proto;\n // TypeScript doesn't set __proto__ in ES5, as it's non-standard.\n // Try to determine the superclass constructor. Compatible implementations\n // must either set __proto__ on a subclass constructor to the superclass constructor,\n // or ensure each class has a valid `constructor` property on its prototype that\n // points back to the constructor.\n // If this is not the same as Function.[[Prototype]], then this is definately inherited.\n // This is the case when in ES6 or when using __proto__ in a compatible browser.\n if (proto !== functionPrototype)\n return proto;\n // If the super prototype is Object.prototype, null, or undefined, then we cannot determine the heritage.\n var prototype = O.prototype;\n var prototypeProto = prototype && Object.getPrototypeOf(prototype);\n if (prototypeProto == null || prototypeProto === Object.prototype)\n return proto;\n // If the constructor was not a function, then we cannot determine the heritage.\n var constructor = prototypeProto.constructor;\n if (typeof constructor !== \"function\")\n return proto;\n // If we have some kind of self-reference, then we cannot determine the heritage.\n if (constructor === O)\n return proto;\n // we have a pretty good guess at the heritage.\n return constructor;\n }\n // naive Map shim\n function CreateMapPolyfill() {\n var cacheSentinel = {};\n var arraySentinel = [];\n var MapIterator = /** @class */ (function () {\n function MapIterator(keys, values, selector) {\n this._index = 0;\n this._keys = keys;\n this._values = values;\n this._selector = selector;\n }\n MapIterator.prototype[\"@@iterator\"] = function () { return this; };\n MapIterator.prototype[iteratorSymbol] = function () { return this; };\n MapIterator.prototype.next = function () {\n var index = this._index;\n if (index >= 0 && index < this._keys.length) {\n var result = this._selector(this._keys[index], this._values[index]);\n if (index + 1 >= this._keys.length) {\n this._index = -1;\n this._keys = arraySentinel;\n this._values = arraySentinel;\n }\n else {\n this._index++;\n }\n return { value: result, done: false };\n }\n return { value: undefined, done: true };\n };\n MapIterator.prototype.throw = function (error) {\n if (this._index >= 0) {\n this._index = -1;\n this._keys = arraySentinel;\n this._values = arraySentinel;\n }\n throw error;\n };\n MapIterator.prototype.return = function (value) {\n if (this._index >= 0) {\n this._index = -1;\n this._keys = arraySentinel;\n this._values = arraySentinel;\n }\n return { value: value, done: true };\n };\n return MapIterator;\n }());\n return /** @class */ (function () {\n function Map() {\n this._keys = [];\n this._values = [];\n this._cacheKey = cacheSentinel;\n this._cacheIndex = -2;\n }\n Object.defineProperty(Map.prototype, \"size\", {\n get: function () { return this._keys.length; },\n enumerable: true,\n configurable: true\n });\n Map.prototype.has = function (key) { return this._find(key, /*insert*/ false) >= 0; };\n Map.prototype.get = function (key) {\n var index = this._find(key, /*insert*/ false);\n return index >= 0 ? this._values[index] : undefined;\n };\n Map.prototype.set = function (key, value) {\n var index = this._find(key, /*insert*/ true);\n this._values[index] = value;\n return this;\n };\n Map.prototype.delete = function (key) {\n var index = this._find(key, /*insert*/ false);\n if (index >= 0) {\n var size = this._keys.length;\n for (var i = index + 1; i < size; i++) {\n this._keys[i - 1] = this._keys[i];\n this._values[i - 1] = this._values[i];\n }\n this._keys.length--;\n this._values.length--;\n if (key === this._cacheKey) {\n this._cacheKey = cacheSentinel;\n this._cacheIndex = -2;\n }\n return true;\n }\n return false;\n };\n Map.prototype.clear = function () {\n this._keys.length = 0;\n this._values.length = 0;\n this._cacheKey = cacheSentinel;\n this._cacheIndex = -2;\n };\n Map.prototype.keys = function () { return new MapIterator(this._keys, this._values, getKey); };\n Map.prototype.values = function () { return new MapIterator(this._keys, this._values, getValue); };\n Map.prototype.entries = function () { return new MapIterator(this._keys, this._values, getEntry); };\n Map.prototype[\"@@iterator\"] = function () { return this.entries(); };\n Map.prototype[iteratorSymbol] = function () { return this.entries(); };\n Map.prototype._find = function (key, insert) {\n if (this._cacheKey !== key) {\n this._cacheIndex = this._keys.indexOf(this._cacheKey = key);\n }\n if (this._cacheIndex < 0 && insert) {\n this._cacheIndex = this._keys.length;\n this._keys.push(key);\n this._values.push(undefined);\n }\n return this._cacheIndex;\n };\n return Map;\n }());\n function getKey(key, _) {\n return key;\n }\n function getValue(_, value) {\n return value;\n }\n function getEntry(key, value) {\n return [key, value];\n }\n }\n // naive Set shim\n function CreateSetPolyfill() {\n return /** @class */ (function () {\n function Set() {\n this._map = new _Map();\n }\n Object.defineProperty(Set.prototype, \"size\", {\n get: function () { return this._map.size; },\n enumerable: true,\n configurable: true\n });\n Set.prototype.has = function (value) { return this._map.has(value); };\n Set.prototype.add = function (value) { return this._map.set(value, value), this; };\n Set.prototype.delete = function (value) { return this._map.delete(value); };\n Set.prototype.clear = function () { this._map.clear(); };\n Set.prototype.keys = function () { return this._map.keys(); };\n Set.prototype.values = function () { return this._map.values(); };\n Set.prototype.entries = function () { return this._map.entries(); };\n Set.prototype[\"@@iterator\"] = function () { return this.keys(); };\n Set.prototype[iteratorSymbol] = function () { return this.keys(); };\n return Set;\n }());\n }\n // naive WeakMap shim\n function CreateWeakMapPolyfill() {\n var UUID_SIZE = 16;\n var keys = HashMap.create();\n var rootKey = CreateUniqueKey();\n return /** @class */ (function () {\n function WeakMap() {\n this._key = CreateUniqueKey();\n }\n WeakMap.prototype.has = function (target) {\n var table = GetOrCreateWeakMapTable(target, /*create*/ false);\n return table !== undefined ? HashMap.has(table, this._key) : false;\n };\n WeakMap.prototype.get = function (target) {\n var table = GetOrCreateWeakMapTable(target, /*create*/ false);\n return table !== undefined ? HashMap.get(table, this._key) : undefined;\n };\n WeakMap.prototype.set = function (target, value) {\n var table = GetOrCreateWeakMapTable(target, /*create*/ true);\n table[this._key] = value;\n return this;\n };\n WeakMap.prototype.delete = function (target) {\n var table = GetOrCreateWeakMapTable(target, /*create*/ false);\n return table !== undefined ? delete table[this._key] : false;\n };\n WeakMap.prototype.clear = function () {\n // NOTE: not a real clear, just makes the previous data unreachable\n this._key = CreateUniqueKey();\n };\n return WeakMap;\n }());\n function CreateUniqueKey() {\n var key;\n do\n key = \"@@WeakMap@@\" + CreateUUID();\n while (HashMap.has(keys, key));\n keys[key] = true;\n return key;\n }\n function GetOrCreateWeakMapTable(target, create) {\n if (!hasOwn.call(target, rootKey)) {\n if (!create)\n return undefined;\n Object.defineProperty(target, rootKey, { value: HashMap.create() });\n }\n return target[rootKey];\n }\n function FillRandomBytes(buffer, size) {\n for (var i = 0; i < size; ++i)\n buffer[i] = Math.random() * 0xff | 0;\n return buffer;\n }\n function GenRandomBytes(size) {\n if (typeof Uint8Array === \"function\") {\n if (typeof crypto !== \"undefined\")\n return crypto.getRandomValues(new Uint8Array(size));\n if (typeof msCrypto !== \"undefined\")\n return msCrypto.getRandomValues(new Uint8Array(size));\n return FillRandomBytes(new Uint8Array(size), size);\n }\n return FillRandomBytes(new Array(size), size);\n }\n function CreateUUID() {\n var data = GenRandomBytes(UUID_SIZE);\n // mark as random - RFC 4122 \u00A7 4.4\n data[6] = data[6] & 0x4f | 0x40;\n data[8] = data[8] & 0xbf | 0x80;\n var result = \"\";\n for (var offset = 0; offset < UUID_SIZE; ++offset) {\n var byte = data[offset];\n if (offset === 4 || offset === 6 || offset === 8)\n result += \"-\";\n if (byte < 16)\n result += \"0\";\n result += byte.toString(16).toLowerCase();\n }\n return result;\n }\n }\n // uses a heuristic used by v8 and chakra to force an object into dictionary mode.\n function MakeDictionary(obj) {\n obj.__ = undefined;\n delete obj.__;\n return obj;\n }\n });\n})(Reflect || (Reflect = {}));\n", null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, "import { Rect, TextureData, vec2 } from \"@sardinefish/zogra-renderer\";\r\nimport { RaindropRenderer, RenderOptions } from \"./renderer\";\r\nimport { RaindropSimulator, SimulatorOptions } from \"./simulator\";\r\nimport { Time } from \"./utils\";\r\n\r\ninterface Options extends SimulatorOptions, RenderOptions\r\n{\r\n}\r\n\r\nclass RaindropFX\r\n{\r\n public options: Options;\r\n public renderer: RaindropRenderer;\r\n public simulator: RaindropSimulator;\r\n\r\n private animHandle = 0;\r\n\r\n constructor(options: Partial & {canvas: HTMLCanvasElement})\r\n {\r\n const canvas = options.canvas;\r\n const defaultOptions: Options = {\r\n // Simulator options\r\n spawnInterval: [0.1, 0.1],\r\n spawnSize: [60, 100],\r\n spawnLimit: 2000,\r\n viewport: new Rect(vec2.zero(), vec2(canvas.width, canvas.height)),\r\n canvas: canvas,\r\n width: canvas.width,\r\n height: canvas.height,\r\n background: \"\",\r\n gravity: 2400,\r\n slipRate: 0,\r\n motionInterval: [0.1, 0.4],\r\n colliderSize: 1,\r\n trailDropDensity: 0.2,\r\n trailDistance: [20, 30],\r\n trailDropSize: [0.3, 0.5],\r\n trailSpread: 0.6,\r\n initialSpread: 0.5,\r\n shrinkRate: 0.01,\r\n velocitySpread: 0.3,\r\n evaporate: 10,\r\n xShifting: [0, 0.1],\r\n\r\n // Rendering options\r\n backgroundBlurSteps: 3,\r\n mist: true,\r\n mistColor: [0.01, 0.01, 0.01, 1],\r\n mistBlurStep: 4,\r\n mistTime: 10,\r\n dropletsPerSeconds: 500,\r\n dropletSize: [10, 30],\r\n smoothRaindrop: [0.96, 0.99],\r\n refractBase: 0.4,\r\n refractScale: 0.6,\r\n raindropCompose: \"smoother\",\r\n raindropLightPos: [-1, 1, 2, 0],\r\n raindropDiffuseLight: [0.2, 0.2, 0.2],\r\n raindropShadowOffset: 0.8,\r\n raindropEraserSize: [0.93, 1.0],\r\n raindropSpecularLight: [0, 0, 0],\r\n raindropSpecularShininess: 256,\r\n raindropLightBump: 1,\r\n };\r\n this.options = { ...defaultOptions, ...options };\r\n\r\n this.simulator = new RaindropSimulator(this.options);\r\n this.renderer = new RaindropRenderer(this.options);\r\n }\r\n \r\n async start()\r\n {\r\n await this.renderer.loadAssets();\r\n\r\n let lastFrameTime = 0;\r\n const update = (delay: number) =>\r\n {\r\n const dt = (delay - lastFrameTime) / 1000;\r\n lastFrameTime = delay;\r\n const time =